JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (9): 62-70.doi: 10.6040/j.issn.1671-9352.0.2024.077
OUYANG Yuxuan, PENG Yaopan, ZHANG Rongfen*, LIU Yuhong
CLC Number:
[1] World Health Organization. World report on vision[R/OL].(2019-10-08)[2024-03-11]. https://www.who.int/publications/i/item/9789241516570. [2] 徐波. 盲人视觉辅助导航系统设计[D]. 北京:中国科学院大学, 2020. XU Bo. Visual aided navigation system for the blind[D]. Beijing: University of Chinese Academy of Sciences, 2020. [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus: IEEE, 2014:580-587. [4] GIRSHICK R. Fast R-CNN[C] //IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: IEEE, 2015:1440-1448. [5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single ShotMultiBox Detector[C] //Computer Vision-ECCV. Cham: Springer International Publishing, 2016: 21-37. [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016:779-788. [8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [9] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C] //IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019:9627-9636. [10] LAWAL M O. Tomato detection based on modified YOLOv3 framework[J]. Scientific Reports, 2021, 11(1):1-11. [11] 郭君斌,于琳,于传强. 改进YOLOv5s算法在交通标志检测识别中的应用[J]. 国防科技大学学报,2024,46(6):123-130. GUO Junbing, YU Lin, YU Chuanqiang. Application of improved YOLOv5s algorithm in traffic sign detection and recognition[J]. Journal of National University of Defense Technology, 2024, 46(6):123-130. [12] BIST R B, SUBEDI S, YANG X, et al. A novel YOLOv6 object detector for monitoring piling behavior of cage-free laying hens[J]. AgriEngineering, 2023, 5(2):905-923. [13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Vancouver: IEEE, 2023:7464-7475. [14] SHAFIQ M, GU Z. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12(18):8972. [15] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle: IEEE, 2020:1577-1586. [16] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C] // IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018:6848-6856. [17] JANG J G, QUAN C, LEE H D, et al. Falcon: lightweight and accurate convolution based on depthwise separable convolution[J]. Knowledge and Information Systems, 2023, 65(5):2225-2249. [18] JIANG L, NIE W, ZHU J, et al. Lightweight object detection network model suitable for indoor mobile robots[J]. Journal of Mechanical Science and Technology, 2022, 36(2):907-920. [19] YI C, LIU J, HUANG T, et al. An efficient method of pavement distress detection based on improved YOLOv7[J]. Measurement Science and Technology, 2023, 34(11):115402. [20] YANG L, ZHANG R Y, LI L, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks[C] //Proceedings of the 38th International Conference on Machine Learning. World Wide Web, PMLR, 2021:11863-11874. [21] 卢俊哲,张铖怡,刘世鹏,等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15):318-328. LU Junzhe, ZHANG Chengyi, LIU Shipeng, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environment[J]. Computer Engineering and Application, 2023, 59(15):318-328. [22] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C] //Proceedings of the European conference on computer vision(ECCV). Munich: Springer, 2018:385-400. [23] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v4.0-nn.SiLU()activations, Weights & Biases logging, PyTorch Hub integration[EB/OL].(2021-01-05)[2024-03-11]. http://ui.adsabs.harvard.edu/abs/2021zndo...4418161J/abstract. [24] ROSAL J E C, HISOLA D I E, DEMABILDO M S. Grade classification of yellow fin tuna meat using F-RCNN with inception V2 architecture[C] //IEEE International Conference on Artificial Intelligence in Engineering and Technology(IICAIET), Kota: IEEE, 2023:252-256. [25] 杨锦辉,李鸿,杜芸彦,等. 基于改进YOLOv5s的轻量化目标检测算法[J]. 电光与控制,2023,30(2):24-30. YANG Jinhui, LI Hong, DU Yunyan, et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics & Control, 2023, 30(2):24-30. [26] JIANG T, CHENG J. Target recognition based on CNN with LeakyReLU and PReLU activation functions [C] //International Conference on Sensing, Diag nostics, Prognostics, and Control(SDPC). Beijing: IEEE, 2019:718-722. [27] MONDAL A, SHRIVASTAVA V K. A novel parametric flatten-p mish activation function based deep CNN model for brain tumor classification[J]. Computers in Biology and Medicine, 2022, 150:106183. [28] DEVI T, DEEPA N. A novel intervention method for aspect-based emotionusing exponential linear unit(ELU)activation function in a deep neural network[C] //2021 5th international conference on intelligent computing and control systems(ICICCS). Madurai: IEEE, 2021:1671-1675. |
[1] | Cheng LI,Wengang CHE,Shengxiang GAO. A object detection algorithm for aerial images [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 59-70. |
[2] | Ming-xing LIN. Low-light image enhancement algorithm based on variational structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 72-80. |
[3] | PAN Zhen-kuan,WEI Wei-bo,ZHANG Hai-tao . Variational models for image diffusion based on gradient and Laplacian [J]. J4, 2008, 43(11): 11-16 . |
[4] | WANG Zeng-zhen, LIU Hua-yong, ZHA Dong-dong. Progressive-iterative approximation by the triangular β-B curves with shape parameter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 81-94. |
[5] | ZHAO Yulin, LIANG Fengning, ZHAO Teng, CAO Yaru, WANG Lin, ZHU Hong. Method for glioma gene status prediction based on deep truth discovery [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(7): 13-21. |
|