JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (9): 62-70.doi: 10.6040/j.issn.1671-9352.0.2024.077

Previous Articles    

Improvement of the YOLOv7-tiny visual-assisted lightweight algorithm based on high-channel convolution

OUYANG Yuxuan, PENG Yaopan, ZHANG Rongfen*, LIU Yuhong   

  1. College of Big Data and Information Engineering, Guizhou University, Guiyang 50025, Guizhou, China
  • Published:2025-09-10

Abstract: In response to the issues of large parameter size, low detection performance, and inconvenience for deployment on mobile devices in most existing visual assistance system algorithms, a lightweight visual assistance algorithm is designed based on YOLOv7-tiny. The receptive field block(RFB)is used in the network to fuse the feature information of different scales to improve the detection accuracy of objects of different resolution sizes. The non-linearity of activation function sigmoid linear unit(Silu)is used to enhance the fitting ability of the model, improve the learning speed and detection accuracy of the model. Finally, the depth-wise convolution(DWConv)with better performance is selected by comparison experiment to achieve the lightweight of the model. The experimental results show that the parameters of the improved lightweight model are reduced by 52.1% compared with the original model, and the best detection performance is obtained. Compared with other mainstream object detection algorithms, this algorithm achieves more accurate real-time detection of indoor objects with 2.90 M parameters.

Key words: high-channel convolution, receptive field block, activation function Silu, DWConv

CLC Number: 

  • TP391.41
[1] World Health Organization. World report on vision[R/OL].(2019-10-08)[2024-03-11]. https://www.who.int/publications/i/item/9789241516570.
[2] 徐波. 盲人视觉辅助导航系统设计[D]. 北京:中国科学院大学, 2020. XU Bo. Visual aided navigation system for the blind[D]. Beijing: University of Chinese Academy of Sciences, 2020.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus: IEEE, 2014:580-587.
[4] GIRSHICK R. Fast R-CNN[C] //IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: IEEE, 2015:1440-1448.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single ShotMultiBox Detector[C] //Computer Vision-ECCV. Cham: Springer International Publishing, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016:779-788.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
[9] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C] //IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019:9627-9636.
[10] LAWAL M O. Tomato detection based on modified YOLOv3 framework[J]. Scientific Reports, 2021, 11(1):1-11.
[11] 郭君斌,于琳,于传强. 改进YOLOv5s算法在交通标志检测识别中的应用[J]. 国防科技大学学报,2024,46(6):123-130. GUO Junbing, YU Lin, YU Chuanqiang. Application of improved YOLOv5s algorithm in traffic sign detection and recognition[J]. Journal of National University of Defense Technology, 2024, 46(6):123-130.
[12] BIST R B, SUBEDI S, YANG X, et al. A novel YOLOv6 object detector for monitoring piling behavior of cage-free laying hens[J]. AgriEngineering, 2023, 5(2):905-923.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Vancouver: IEEE, 2023:7464-7475.
[14] SHAFIQ M, GU Z. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12(18):8972.
[15] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle: IEEE, 2020:1577-1586.
[16] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C] // IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018:6848-6856.
[17] JANG J G, QUAN C, LEE H D, et al. Falcon: lightweight and accurate convolution based on depthwise separable convolution[J]. Knowledge and Information Systems, 2023, 65(5):2225-2249.
[18] JIANG L, NIE W, ZHU J, et al. Lightweight object detection network model suitable for indoor mobile robots[J]. Journal of Mechanical Science and Technology, 2022, 36(2):907-920.
[19] YI C, LIU J, HUANG T, et al. An efficient method of pavement distress detection based on improved YOLOv7[J]. Measurement Science and Technology, 2023, 34(11):115402.
[20] YANG L, ZHANG R Y, LI L, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks[C] //Proceedings of the 38th International Conference on Machine Learning. World Wide Web, PMLR, 2021:11863-11874.
[21] 卢俊哲,张铖怡,刘世鹏,等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15):318-328. LU Junzhe, ZHANG Chengyi, LIU Shipeng, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environment[J]. Computer Engineering and Application, 2023, 59(15):318-328.
[22] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C] //Proceedings of the European conference on computer vision(ECCV). Munich: Springer, 2018:385-400.
[23] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v4.0-nn.SiLU()activations, Weights & Biases logging, PyTorch Hub integration[EB/OL].(2021-01-05)[2024-03-11]. http://ui.adsabs.harvard.edu/abs/2021zndo...4418161J/abstract.
[24] ROSAL J E C, HISOLA D I E, DEMABILDO M S. Grade classification of yellow fin tuna meat using F-RCNN with inception V2 architecture[C] //IEEE International Conference on Artificial Intelligence in Engineering and Technology(IICAIET), Kota: IEEE, 2023:252-256.
[25] 杨锦辉,李鸿,杜芸彦,等. 基于改进YOLOv5s的轻量化目标检测算法[J]. 电光与控制,2023,30(2):24-30. YANG Jinhui, LI Hong, DU Yunyan, et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics & Control, 2023, 30(2):24-30.
[26] JIANG T, CHENG J. Target recognition based on CNN with LeakyReLU and PReLU activation functions [C] //International Conference on Sensing, Diag nostics, Prognostics, and Control(SDPC). Beijing: IEEE, 2019:718-722.
[27] MONDAL A, SHRIVASTAVA V K. A novel parametric flatten-p mish activation function based deep CNN model for brain tumor classification[J]. Computers in Biology and Medicine, 2022, 150:106183.
[28] DEVI T, DEEPA N. A novel intervention method for aspect-based emotionusing exponential linear unit(ELU)activation function in a deep neural network[C] //2021 5th international conference on intelligent computing and control systems(ICICCS). Madurai: IEEE, 2021:1671-1675.
[1] Cheng LI,Wengang CHE,Shengxiang GAO. A object detection algorithm for aerial images [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 59-70.
[2] Ming-xing LIN. Low-light image enhancement algorithm based on variational structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 72-80.
[3] PAN Zhen-kuan,WEI Wei-bo,ZHANG Hai-tao . Variational models for image diffusion based on gradient and Laplacian [J]. J4, 2008, 43(11): 11-16 .
[4] WANG Zeng-zhen, LIU Hua-yong, ZHA Dong-dong. Progressive-iterative approximation by the triangular β-B curves with shape parameter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 81-94.
[5] ZHAO Yulin, LIANG Fengning, ZHAO Teng, CAO Yaru, WANG Lin, ZHU Hong. Method for glioma gene status prediction based on deep truth discovery [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(7): 13-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!