JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (7): 13-21.doi: 10.6040/j.issn.1671-9352.0.2023.550
ZHAO Yulin, LIANG Fengning, ZHAO Teng, CAO Yaru, WANG Lin, ZHU Hong*
CLC Number:
[1] SLEDZINSKA P, BEBYN M, FURTAK J, et al. Current and promising treatment strategies in glioma[J]. Reviews in the Neurosciences, 2022, 34(5):483-516. [2] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro-Oncology, 2021, 23(8):1231-1251. [3] XU Jie, XU Fangping, LIU Zhihua, et al. The correlation analysis of TERT promoter mutations with IDH1/2 mutations and 1p/19q detected in human gliomas[J]. Medicine, 2022, 101(29):e29668. [4] OHBA S, KUWAHARA K, YAMADA S, et al. Correlation between IDH, ATRX, and TERT promoter mutations in glioma[J]. Brain Tumor Pathology, 2020, 37(2):33-40. [5] LI Yiming, WEI Dong, LIU Xing, et al. Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning[J]. European Radiology, 2022, 32(2):747-758. [6] WENG G D, ERMI?瘙塁 E, MARAGKOU T, et al. Accurate prediction of isocitrate dehydrogenase-mutation status of gliomas using SLOW-editing magnetic resonance spectroscopic imaging at 7 T MR[J]. Neuro-Oncology Advances, 2023, 5(1):vdad001. [7] XU Qian, XU Qianqian, SHI Nian, et al. A multitask classification framework based on vision transformer for predicting molecular expressions of glioma[J]. European Journal of Radiology, 2022, 157:110560 [8] MA Chunwei, HUANG Ziyun, XIAN Jiayi, et al. Improving uncertainty calibration of deep neural networks via truth discovery and geometric optimization[C] //Uncertainty in Artificial Intelligence. [S.l.] :PMLR, 2021:75-85. [9] MURUGESAN B, LIU B Y, GALDRAN A, et al. Calibrating segmentation networks with margin-based label smoothing[J]. Medical Image Analysis, 2023, 87:102826. [10] BUDDENKOTTE T, ESCUDERO SANCHEZ L, CRISPIN-ORTUZAR M, et al. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation[J]. Computers in Biology and Medicine, 2023, 163:107096. [11] CANT K, EVINS R. Improved calibration of building models using approximate Bayesian calibration and neural networks[J]. Journal of Building Performance Simulation, 2023, 16(3):291-307. [12] SHAFIQ M, GU Z. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12(18):8972. [13] XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017:1492-1500. [14] DING Hu, XU Jinhui. Learning the truth vector in high dimensions[J]. Journal of Computer and System Sciences, 2020, 109:78-94. [15] KUMAR A, LIANG P, MA T. Verified uncertainty calibration[EB/OL].(2019-09-23)[2023-12-29]. http://arxiv.org/abs/1909.10155. [16] GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[C] //Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney: ACM, 2017:1321-1330. [17] 曹建军,常宸,翁年凤,等. 基于神经网络编码的真值发现[J]. 计算机工程与科学,2021,43(9):1546-1557. CAO Jianjun, CHANG Chen, WENG Nianfeng, et al. Truth discovery based on neural network encoding[J]. Computer Engineering & Science, 2021, 43(9):1546-1557. [18] XU Haitao, ZHANG Haiwang, LI Qianqian, et al. A data-semantic-conflict-based multi-truth discovery algorithm for a programming site[J]. Computers, Materials & Continua, 2021, 68(2):2681-2691. [19] CHOI Y S, BAE S, CHANG J H, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro-Oncology, 2021, 23(2):304-313. [20] TAHA B, LI T H, BOLEY D, et al. Detection of isocitrate dehydrogenase mutated glioblastomas through anomaly detection analytics[J]. Neurosurgery, 2021, 89(2):323-328. [21] KAWAGUCHI R K, TAKAHASHI M, MIYAKE M, et al. Assessing versatile machine learning models for glioma radiogenomic studies across hospitals[J]. Cancers, 2021, 13(14):3611. |
[1] | CHEN Yumin, ZHENG Guangyu, JIAO Na. Multi-label learning based on granular neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(5): 1-11. |
[2] | Cheng LI,Wengang CHE,Shengxiang GAO. A object detection algorithm for aerial images [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 59-70. |
[3] | Huachang XU,Qian XU,Yulin ZHAO,Fengning LIANG,Kai XU,Hong ZHU. Prediction method of IDH1 mutation status of glioma based on improved EfficientNetV2 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 60-66. |
[4] | Chengcheng ZHONG,Heng ZHOU,Zitong ZHANG,Chunlei ZHANG. LAC-UNet: semantic segmentation model based on capsules for representing part-whole hierarchical features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 116-126. |
[5] | Fei-fei XU,Yun-jie XU. Research on matching resumes and positions based on Arc-LSTM [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 83-90. |
[6] | Chang-ying HAO,Yan-yan LAN,Hai-nan ZHANG,Jia-feng GUO,Jun XU,Liang PANG,Xue-qi CHENG. Dialogue generation model based on extended keywords information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 68-76. |
[7] | LIU Biao, LU Zhe, HUANG Yu-wei, JIAO Meng, LI Quan-qi, XUE Rui. Comparative study on neural network structures in power analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 60-66. |
[8] | PANG Bo, LIU Yuan-chao. Fusion of pointwise and deep learning methods for passage ranking [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 30-35. |
[9] | LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian. Steganalysis method based on shallow convolution neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 63-70. |
[10] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
|