JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (7): 60-66.doi: 10.6040/j.issn.1671-9352.4.2022.2945
Previous Articles Next Articles
Huachang XU1(),Qian XU2,Yulin ZHAO1,Fengning LIANG1,Kai XU2,Hong ZHU1,*()
CLC Number:
1 |
LOUIS D N , PERRY A , REIFENBERGER G , et al. The 2016 World Health Organization Classification of Tumors of the central nervous system: a summary[J]. Acta Neuropathologica, 2016, 131 (6): 803- 820.
doi: 10.1007/s00401-016-1545-1 |
2 |
CHEN X , YAN Y L , ZHOU J H , et al. Clinical prognostic value of isocitrate dehydrogenase mutation, O-6-methylguanine-DNA methyltransferase promoter methylation, and 1p19q co-deletion in glioma patients[J]. Annals of Translational Medicine, 2019, 7 (20): 541.
doi: 10.21037/atm.2019.09.126 |
3 |
LOUIS D N , ARIE P , PIETER W , et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23 (8): 1231- 1251.
doi: 10.1093/neuonc/noab106 |
4 |
MILLER J J , SHIH H A , ANDRONESI O C , et al. Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications[J]. Cancer, 2017, 123 (23): 4535- 4546.
doi: 10.1002/cncr.31039 |
5 |
CHOI Y S , BAE S , CHANG J H , et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro Oncol, 2021, 23 (2): 304- 313.
doi: 10.1093/neuonc/noaa177 |
6 |
CHOI K S , CHOI S H , JEONG B . Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro Oncol, 2019, 21 (9): 1197- 1209.
doi: 10.1093/neuonc/noz095 |
7 |
BANGALORE Y C , SHAH B R , VEJDANI-JAHROMI M , et al. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas[J]. Neuro Oncol, 2020, 22 (3): 402- 411.
doi: 10.1093/neuonc/noz199 |
8 | LEE D. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[C]//International Conference on Machine Learning (ICML) 2013. New York: ACM, 2013. |
9 |
ZHANG L F , FRIED D V , FAVE X J , et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics[J]. Med Phys, 2015, 42 (3): 1341- 1353.
doi: 10.1118/1.4908210 |
10 | TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[J/OL]. arXiv, 2021. https://arxiv.org/pdf/2104.00298v1. |
11 | HU J , SHEN L , SAMUEL A , et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42 (8): 2011- 2023. |
12 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13708-13717. |
13 |
PAN W . A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26, 69- 74.
doi: 10.1016/j.knosys.2011.07.001 |
[1] | WU Qi-ran, ZHOU Li-kai, SUN Jin-jin, WANG Nian-ge, YU Qun-fang. Research on characteristics of air quality change in Zhejiang Province——based on functional data analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 53-64. |
|