JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (7): 60-66.doi: 10.6040/j.issn.1671-9352.4.2022.2945

Previous Articles     Next Articles

Prediction method of IDH1 mutation status of glioma based on improved EfficientNetV2

Huachang XU1(),Qian XU2,Yulin ZHAO1,Fengning LIANG1,Kai XU2,Hong ZHU1,*()   

  1. 1. School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
    2. Medical Imaging Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
  • Received:2022-07-26 Online:2023-07-20 Published:2023-07-05
  • Contact: Hong ZHU E-mail:300109110841@stu.xzhmu.edu.cn;zhuhong@xzhmu.edu.cn

Abstract:

The paper proposes a method for predicting the IDH1 mutation status of gliomas based on improved EfficientNetV2. Firstly, k-means clustering algorithm is used to label pseudo-labels for unlabeled glioma MRI data, and the Vision Transformer network is used to correct the pseudo-labels to realize glioma data amplification. Secondly, the coordinate attention is added to the EfficientNetV2 model, and the fruit fly optimization algorithm is used to give the optimal weight to the pseudo-label data during the model training process. Finally, the glioma IDH1 mutation status is classified, and the prediction accuracy is 96.32%. The experimental results show that the proposed method can non-invasively and accurately predict the IDH1 mutation status of gliomas before surgery.

Key words: EfficientNetV2, glioma IDH1, k-means clustering, pseudo-label, fruit fly optimization algorithm

CLC Number: 

  • TP18

Fig.1

k-means clustering algorithm flowchart"

Fig.2

Pseudo-label labeling flowchart"

Table 1

EfficientNetV2-S network structure"

Stage Operator Stride Channels Layers
0 Conv3×3 2 24 1
1 Fused-MBConv1, k3×3 1 24 2
2 Fused-MBConv4, k3×3 2 48 4
3 Fused-MBConv4, k3×3 2 64 4
4 MBConv4, k3×3, SE0.25 2 128 6
5 MBConv6, k3×3, SE0.25 1 160 9
6 MBConv6, k3×3, SE0.25 2 256 15
7 Conv1×1 & Pooling & FC 1 280 1

Fig.3

MBConv module in EfficientNetV2"

Fig.4

Improved MBConv module"

Fig.5

Fruit fly optimization algorithm process"

Table 2

Model test results"

模型 准确率/% 精确率/% 召回率/% F1分数/% AUROC
T-Net 91.12 89.81 90.71 90.23 0.970 8
TP-Net 94.54 93.61 91.16 92.30 0.976 1
TP-CA-Net 96.32 95.16 94.70 94.93 0.979 2

Fig.6

ROC curves of the three models"

Table 3

Performance comparison of different models in predicting IDH1 status in TCIA gliomas"

指标 Inception-V3 Mobile-Net-V2 ResNet-50 DenseNet-121 EfficientNet-B0 TP-CA-Net
准确率/% 88.73 77.93 0.892 0 86.85 89.67 95.87
精确率/% 68.19 46.56 44.60 64.25 44.84 95.67
召回率/% 71.37 45.25 50.00 64.25 50.00 92.36
F1分数/% 69.59 45.81 47.15 64.25 47.28 93.88
AUROC 0.832 9 0.513 3 0.535 5 0.866 6 0.530 5 0.972 6
1 LOUIS D N , PERRY A , REIFENBERGER G , et al. The 2016 World Health Organization Classification of Tumors of the central nervous system: a summary[J]. Acta Neuropathologica, 2016, 131 (6): 803- 820.
doi: 10.1007/s00401-016-1545-1
2 CHEN X , YAN Y L , ZHOU J H , et al. Clinical prognostic value of isocitrate dehydrogenase mutation, O-6-methylguanine-DNA methyltransferase promoter methylation, and 1p19q co-deletion in glioma patients[J]. Annals of Translational Medicine, 2019, 7 (20): 541.
doi: 10.21037/atm.2019.09.126
3 LOUIS D N , ARIE P , PIETER W , et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23 (8): 1231- 1251.
doi: 10.1093/neuonc/noab106
4 MILLER J J , SHIH H A , ANDRONESI O C , et al. Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications[J]. Cancer, 2017, 123 (23): 4535- 4546.
doi: 10.1002/cncr.31039
5 CHOI Y S , BAE S , CHANG J H , et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro Oncol, 2021, 23 (2): 304- 313.
doi: 10.1093/neuonc/noaa177
6 CHOI K S , CHOI S H , JEONG B . Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro Oncol, 2019, 21 (9): 1197- 1209.
doi: 10.1093/neuonc/noz095
7 BANGALORE Y C , SHAH B R , VEJDANI-JAHROMI M , et al. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas[J]. Neuro Oncol, 2020, 22 (3): 402- 411.
doi: 10.1093/neuonc/noz199
8 LEE D. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[C]//International Conference on Machine Learning (ICML) 2013. New York: ACM, 2013.
9 ZHANG L F , FRIED D V , FAVE X J , et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics[J]. Med Phys, 2015, 42 (3): 1341- 1353.
doi: 10.1118/1.4908210
10 TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[J/OL]. arXiv, 2021. https://arxiv.org/pdf/2104.00298v1.
11 HU J , SHEN L , SAMUEL A , et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42 (8): 2011- 2023.
12 HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13708-13717.
13 PAN W . A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26, 69- 74.
doi: 10.1016/j.knosys.2011.07.001
[1] WU Qi-ran, ZHOU Li-kai, SUN Jin-jin, WANG Nian-ge, YU Qun-fang. Research on characteristics of air quality change in Zhejiang Province——based on functional data analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 53-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[2] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[3] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[4] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[5] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[6] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[7] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[8] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[9] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[10] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .