您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (09): 69-77.doi: 10.6040/j.issn.1671-9352.0.2014.290

• 论文 • 上一篇    下一篇

考虑市场占有率的面向服务互联网多准则均衡模型

周岩, 韩瑞京, 窦杰, 刘超超, 孙浩   

  1. 青岛大学管理科学与工程系, 山东 青岛 266071
  • 收稿日期:2014-06-24 修回日期:2015-01-06 出版日期:2015-09-20 发布日期:2015-09-26
  • 作者简介:周岩(1979-), 女, 博士, 副教授, 研究方向为物流与供应链管理. E-mail:yanyanz22@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(71371102); 山东省自然科学基金(ZR2013GQ007); 山东省高等学校科技计划项目(J12LN43); 青岛大学研究生教育创新计划项目(QDY12020)

Multicriteria equilibrium model of a server-oriented internet with the market share

ZHOU Yan, HAN Rui-jing, DOU Jie, LIU Chao-chao, SUN Hao   

  1. Department of Management Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2014-06-24 Revised:2015-01-06 Online:2015-09-20 Published:2015-09-26

摘要: 研究了由多个服务提供商、多个网络运营商和多个需求市场构成的互联网, 建立了更一般的面向服务互联网均衡模型, 其中服务提供商提供不同质量的服务, 通过网络运营商供给需求市场的顾客下载或购买, 顾客根据服务产品的价格会随机地选择服务。不同的服务提供商之间关于服务数量和服务质量的Nash博弈在利润最大和市场占有率最大两个准则下达到均衡, 不同的网络运营商之间是关于服务价格的Bertrand博弈, 而服务提供商和网络运营商之间为Stackelberg博弈。利用均衡理论、二层规划理论和随机效用理论, 分析了各层成员的均衡条件以及服务提供商和网络运营商之间的均衡条件, 构建了考虑市场占有率的面向服务互联网多准则均衡模型, 即满足均衡约束的变分不等式问题。最后给出求解算法和算例说明模型的有效性, 以及市场占有率的权重指标对互联网各成员利润的影响。

关键词: 多准则, 均衡, 市场占有率, 面向服务

Abstract: A multicriteria equilibrium model of a server-oriented internet with quality competition consisting of the service providers, the network transport providers and the demand markets was designed. The service providers provide substitutable(but not quality identical) services to the demand markets by the net work transpert providers the custemers of the demand markets select the service randomly according to the price. The service providers compete with quantity and quality in a Nash manner to maximize their profits as well as their market share. The network transport providers compete with prices in a Bertrand manner. The two types of competition were unified in a Stackelberg game. The multicriteria equilibrium model of the server-oriented internet was established by variational inequality method based on the game theory bi-level programming and stochastic utility theory. Final, the algorithm were proposed and the numerical examples were solved to test the efficiency of the model and the effect of the market share.

Key words: the market share, equilibrium, multicriteria, server-oriented

中图分类号: 

  • F274
[1] ZHANG Zhili, NABIPAY P, ODLYZKO A, et al. Interactions, competition and innovation in a service-oriented internet: an economic model[C]// Proceedings of IEEE INFOCOM, New York: IEEE, 2010: 1-5.
[2] LV Qian, ROUSKAS G N. An economic model for pricing tiered network services[J]. Annales des Telecommunications, 2010, 65:147-161.
[3] DYABERI J M, PARSONS B, PAI V S, et al. Managing cellular congestion using incentives[J]. IEEE Communications Magazine, 2012, 50(11):100-107.
[4] WOLF T, GRIFFIOEN J, CALVERT K L, et al. Choice as a principle in network architecture[J]. Computer Communication Review, 2012, 42(4):105-106.
[5] NAGURNEY A, LI Dong, WOLF T, et al. A network economic game theory model of a service-oriented internet with choices and quality competition[J]. Netnomisc: Economic Research and Electronic Networking November, 2013, 14(1):1-25.
[6] 王志平, 周生宝,郭俊芳,等. 基于变分不等式的网络广告资源分配的超网络模型[J]. 大连海事大学学报, 2007,33(4):69-72. WANG Zhiping, ZHOU Shengbao, GUN Junfang, et al. Supernetwork model for resource allocation of network-advertisement based on variational inequality[J]. Journal of Dalian Maritime University, 2007, 33(4):69-72.
[7] 吕承超, 王爱熙. 网络经济下厂商竞争机制的经济学分析[J]. 兰州商学院学报, 2011,27(5):98-104. LV Chengchao, WANG Aixi. Economic analysis of the firm's market competition mechanism in the network economy[J]. Journal of Lanzhou Commercial College, 2011, 27(5):98-104.
[8] 唐红, 张月婷. 面向服务的未来互联网体系结构研究[J]. 重庆邮电大学学报:自然科学版, 2013, 25(1):44-51. TANG Hong, ZHANG Yueting. Survey on services-oriented networking in future internet[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2013, 25(1):44-51.
[9] NAGURNEY A, DONG June, ZHANG Ding. A supply chain network equilibrium model[J]. Transportation Research Part E: Logistics and Transportation Review, 2002, 38(5):281-303.
[10] DONG June, ZHANG Ding, NAGURNEY A. A supply chain network equilibrium model with random demand[J]. European Journal of Operational Research, 2004, 156(1):194-212.
[11] NAGURNEY A, YU Min. Sustainable fashion supply chain management under oligopolistic competition and brand differentiation[J]. International Journal of Production Economics, 2012, 135:532-540.
[12] MASOUMI A H, YU Min, NAGURNEY A. A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48:762-780.
[13] 鲁其辉, 朱道立. 质量与价格竞争供应链的均衡与协调策略研究[J]. 管理科学学报, 2009,12(3):56-64. LU Qihui, ZHU Daoli. Research on equilibriums and coordination strategies of supply chains with quality and price competition[J]. Journal of Management Sciences in China, 2009, 12(3):56-64.
[14] 胡劲松, 李增强, 胡小根,等.具有产能约束和价格干预的供应链网络双渠道均衡[J]. 计算机集成制造系统,2012, 18(4):849-858. HU Jinsong, LI Zengqiang, HU Xiaogen, et al. Supply chain network dual channel equilibrium with production capacity constraints and price rigidities[J]. Computer Integrated Manufacturing Systems, 2012, 18(4):849-858.
[15] 胡劲松, 徐元吉, 刘芳霞,等.具有模糊需求的多商品流供应链网络均衡研究[J]. 控制与决策, 2012,27(5):665-672. HU Jinsong, XU Yuanji, LIU Fangxia, et al. Multi-products flow supply chain network equilibrium with fuzzy demand[J]. Control and Decision, 2012, 27(5):665-672.
[16] HAMMOND D. Closed-loop supply chain network equilibrium under legislation[J]. European Journal of Operational Research, 2007, 183:895-908.
[17] YANG Guangfen, WANG Zhipin P, LI Xiaoqiang. The optimization of the closed-loop supply chain network[J]. Transportation Research Part E, 2009, 45(1):16-28.
[18] QIANG Q, KE K. The closed-loop supply chain network with competition, distribution channel investment, and uncertainties[J]. Omega, 2013, 41(2):186-194.
[19] 杨玉香, 周根贵. EPR下供应链网络报废产品排放内生污染税模型[J]. 管理科学学报, 2011, 14(10):67-76. YANG Yuxiang, ZHOU Gengui. An endogenous EOL products emission taxes model for supply chain network under EPR[J]. Journal of Management Sciences in China, 2011, 14(10):67-76.
[20] NAGURNEY A, YU Min. Sustainable fashion supply chain management under oligopolistic competition and brand differentiation[J]. International Journal of Production Economics, 2012, 135:532-540.
[21] NAGURNEY A, YU Min, FLODEN J. Supply chain network sustainability under competition and frequencies of activities from production to distribution[J]. Computational Management Science, 2013, 10(4):397-422.
[22] 吴姣, 徐丽群. 基于随机需求的两级多期供应链网络规划模型[J]. 工业工程与管理, 2009, 14(4):25-29. WU Jiao, XU Liqun. Two-layer multi-period supply chain design under uncertainty[J]. Industrial Engineering and Management, 2009, 14(4):25-29.
[23] 高阳, 詹沙磊. 基于第三方物流的多周期多目标产品回收网络设计[J].控制与决策, 2010, 25(8):1164-1168. GAO Yang, ZHAN Shalei. Design for multi-period multi-objective product recovery networks based on third party logistics[J]. Control and Decision, 2010, 25(8):1164-1168.
[24] 姚锋敏, 滕春贤,陈兆波,等. 二层供应链网络均衡模型的研究[J]. 运筹与管理, 2011,20(5):8-13. YAO Fengmin, TENG Chunxian, CHEN Zhaobo, et al. A bilevel supply chain network equilibrium model[J]. Operations Research and Management Science, 2011, 20(5):8-13.
[25] 姚锋敏, 滕春贤. 基于二层规划的供应链网络间的竞争模型[J].系统工程学报, 2012, 27(4):527-534. YAO Fengmin, TENG Chunxian. Competitive model of supply chain network versus supply chain network based on bi-level programming[J]. Journal of Systems Engineering, 2012, 27(4):527-534.
[26] KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications[M].[S.l.]: Society for Industrial Mathematics, 1980.
[27] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matecon, 1976, 12:747-756.
[1] 郑英杰,周岩. 考虑零售商横向公平的二层供应链网络均衡决策[J]. 山东大学学报(理学版), 2018, 53(9): 69-82.
[2] 丁义涛,杨海滨,杨晓元,周潭平. 一种同态密文域可逆隐藏方案[J]. 山东大学学报(理学版), 2017, 52(7): 104-110.
[3] 杜红乐,张燕,张林. 不均衡数据集下的入侵检测[J]. 山东大学学报(理学版), 2016, 51(11): 50-57.
[4] 周岩, 孙浩, 王晶晶, 韩瑞京, 蒋京龙. 基于随机需求和顾客满意度的多期闭环供应链网络均衡[J]. 山东大学学报(理学版), 2014, 49(07): 38-49.
[5] 许民利,郭沙沙. 基于序贯互惠均衡的委托代理信任研究[J]. J4, 2013, 48(3): 42-47.
[6] 徐兵,熊勇. 需求依赖库存量的n-2型供应链网络决策模型研究[J]. J4, 2012, 47(12): 14-21.
[7] 王另秀,曹叶文*. 基于蚁群算法的多源组播流量均衡的研究[J]. J4, 2011, 46(11): 28-32.
[8] 范丽亚 李爱芹. 向量拟均衡问题解集的连通性[J]. J4, 2010, 45(2): 61-65.
[9] 卢建立,蔡文娟. 均衡二部图中含指定顶点独立6-圈的个数[J]. J4, 2010, 45(12): 5-11.
[10] . 求解交叉规划模型的一类联合均衡方法[J]. J4, 2009, 44(6): 51-55.
[11] 纪荣芳,国忠金 . 内生土地效用指数的城市经济增长优化配置模型[J]. J4, 2008, 43(6): 92-96 .
[12] 耿建艳,颜 谨,李 峰 . 二部图中含指定顶点的独立4-圈[J]. J4, 2008, 43(5): 87-92 .
[13] 徐进 陈柏晓. 多维Bertrand博弈均衡存在性[J]. J4, 2008, 43(12): 80-83.
[14] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12-15 .
[15] 刘华文,,王国俊,张诚一 . 全蕴涵多Ⅰ算法及其在多准则决策中的应用[J]. J4, 2007, 42(6): 74-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!