您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (9): 69-82.doi: 10.6040/j.issn.1671-9352.0.2018.033

• • 上一篇    下一篇

考虑零售商横向公平的二层供应链网络均衡决策

郑英杰,周岩*   

  1. 青岛大学商学院, 山东 青岛 266071
  • 收稿日期:2018-01-23 出版日期:2018-09-20 发布日期:2018-09-10
  • 作者简介:郑英杰(1993— ),男, 硕士研究生,研究方向为供应链管理. E-mail: 624414376@qq.com*通信作者简介: 周岩(1979—),女,博士研究生,副教授,研究方向为供应链管理. E-mail: yanyanz222@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(71371102,71740011);中国博士后科学基金面上资助项目(2016M592151);山东省自然科学基金资助项目(ZR2016GM01);山东省研究生教育创新计划项目(SDYY15032)

Equilibrium decisions of a two-layer supply chain network considering retailers horizontal fairness

  1. School of Business, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2018-01-23 Online:2018-09-20 Published:2018-09-10

摘要: 将单个制造商和零售商的供应链纵向公平研究拓展到上层为单个制造商、下层为多个零售商和需求市场的二层供应链网络,分析多个零售商间的横向公平偏好行为。由于下层零售商具有竞争关系,零售商在决策时会因为与同层其他零售商的利润比较而产生横向公平偏好行为。在考虑多个零售商间横向公平偏好基础上,构建了多个零售商的Nash博弈模型及二层供应链上下层间的Stackelberg-Nash博弈模型,并利用罚函数法求解得到供应链各成员的均衡决策。重点分析多个零售商间的横向公平偏好行为对供应链各成员均衡决策、利润和效用的影响。数值结果表明:供应链成员均衡决策都受到零售商横向公平偏好行为影响,且制造商最优利润、零售商最优效用都低于零售商公平中性时的结果。最后对供应链成员应对横向公平偏好提出合理建议。

关键词: 均衡决策, 横向公平, 罚函数法

Abstract: We extended the vertical fairness research on a supply chain with one manufacturer and one retailer, and considered the horizontal fairness preference in a two-layer supply chain network consisted by an upper tier for a single manufacturer and a lower tier for multiple retailers and demand markets. The retailer chooses his decision based on the horizontal fairness preference comparing the profit of other retailers. Considering retailers horizontal fairness preference, the Nash game model of the retailers and the Stackelberg-Nash game model of the two-layer supply chain network were constructed. The optimal decisions of a two-layer supply chain network were obtained by the penalty function algorithm. The numerical results show that the horizontal fairness preference among retailers lead to different changes in the decisions of the supply chain members, and the maximum profit of manufacturer and the maximum utility of retailers are lower than those of neutral retailers. Finally, some advices are provided to the supply chain members to deal with the horizontal fairness preference.

Key words: horizontal fairness, equilibrium decision, penalty function algorithm

中图分类号: 

  • F274
[1] KAHNEMAN D, KNETSCH J L, THALER R. Fairness as a constraint on profit seeking: entitlements in the market [J]. American Economic Review, 1986, 76(4):728-741.
[2] FEHR E, SCHMIDT K M. A theory of fairness, competition, and cooperation [J]. Quarterly Journal of Economics, 1999, 114(3):817-868.
[3] CUI T H, RAJU J S, ZHANG Z J. Fairness and channel coordination [J]. Management Science, 2007, 53(8):1303-1314.
[4] CALISKAN-DEMIRAG O, CHEN Youhua, LI Jianbin. Channel coordination under fairness concerns and nonlinear demand[J]. European Journal of Operational Research, 2010, 207(3):1321-1326.
[5] DU Shaofu, NIE Tengfei, CHU Chengbin, et al. Newsvendor model for a dyadic supply chain with Nash bargaining fairness[J]. International Journal of Production Research, 2014, 52(17):5070-5085.
[6] QIN Fei, MAI Feng, FRY M J, et al. Supply-chain performance anomalies: fairness concerns under private cost information[J]. European Journal of Operational Research, 2016, 252(1):170-182.
[7] LI Qinghua, LI Bo. Dual-channel supply chain equilibrium problems regarding retail services and fairness concerns[J]. Applied Mathematical Modelling, 2016, 40:7349-7367.
[8] AN Qingxian, CHEN Haoxun, XIONG Beibei, et al. Target intermediate products setting in a two-stage system with fairness concern[J]. Omega, 2017, 73:49-59.
[9] CHEN Jianxin, ZHOU Yongwu, ZHONG Yuanguang. A pricing/ordering model for a dyadic supply chain with buyback guarantee financing and fairness concerns [J]. International Journal of Production Research, 2017, 55:1-18.
[10] 杜少甫, 杜婵, 梁樑,等. 考虑公平关切的供应链契约与协调[J]. 管理科学学报, 2010, 13(11):41-48. DU Shaofu, DU Chan, LIANG Liang, et al. Supply chain coordination considering fairness concerns[J]. Journal of Management Sciences in China, 2010, 13(11):41-48.
[11] 邢伟, 汪寿阳, 赵秋红,等. 考虑渠道公平的双渠道供应链均衡策略[J]. 系统工程理论与实践, 2011, 31(7):1249-1256. XING Wei, WANG Shouyang, ZHAO Qiuhong, et al. Impact of fairness on strategies in dual-channel supply chain[J]. Systems Engineering-Theory & Practice, 2011, 31(7):1249-1256.
[12] 孟庆峰, 盛昭瀚, 李真. 基于公平偏好的供应链质量激励机制效率演化[J]. 系统工程理论与实践, 2012, 32(11):2394-2403. MENG Qingfeng, SHENG Zhaohan, LI Zhen. Efficiency evolution of quality incentive in supply chain based on fairness preference[J]. Systems Engineering-Theory & Practice, 2012, 32(11):2394-2403.
[13] 杜少甫,朱贾昂,高冬,等.Nash讨价还价公平参考下的供应链优化决策[J]. 管理科学学报, 2013, 16(3):68-72. DU Shaofu, ZHU Jiaang, GAO Dong, et al. Optimal decision-making for Nash bargaining fairness concerned newsvendor in two-level supply chain[J]. Journal of Management Sciences in China, 2013, 16(3):68-72.
[14] 马利军, 曾清华, 邵新建. 幂函数需求模式下具有公平偏好的供应链协调[J]. 系统工程理论与实践, 2013, 33(12):3009-3019. MA Lijun, ZENG Qinghua, SHAO Xinjian. Channel coordination with fairness concerns under power-form demand [J]. Systems Engineering-Theory & Practice, 2013, 33(12):3009-3019.
[15] 刘云志, 樊治平. 模糊需求下考虑供应商公平偏好的VMI供应链协调[J]. 系统工程理论与实践, 2016, 36(7), 1661-1675. LIU Yunzhi, FAN Zhiping. VMI supply chain coordination considering fuzzy demand and the suppliers fair preference [J]. Systems Engineering-Theory & Practice, 2016, 36(7):1661-1675.
[16] 刘威志, 李娟, 张迪,等. 公平感对供应链成员定价决策影响的研究[J]. 管理科学学报, 2017, 20(7):115-126. LIU Weizhi, LI Juan, ZHANG Di, et al. Fairnesss effect on the pricing decisions in a supply chain [J]. Journal of Management Sciences in China, 2017, 20(7):115-126.
[17] 刘京, 周岩, 郑英杰,等. 考虑零售商公平关切和风险规避的绿色供应链最优决策[J]. 山东大学学报(理学版), 2018, 53(4):1-18. LIU Jing, ZHOU Yan, ZHENG Yingjie, et al. Optimal decision-making for the green supply chain considering retailers fairness concern and risk aversion [J]. Journal of Shandong University(Natural Science), 2018, 53(4):1-18.
[18] ROY A, SANA S S, CHAUDHURI K. Optimal pricing of competing retailers under uncertain demand a two-layer supply chain model [J]. Annals of Operations Research, 2015, 09:1-20.
[19] LEE W, WANG S P, CHEN W C. Forward and backward stocking policies for a two-level supply chain with consignment stock agreement and stock-dependent demand [J]. European Journal of Operational Research, 2017, 256: 830-840.
[20] 姚锋敏,滕春贤,陈兆波,等.二层供应链网络均衡模型的研究[J]. 运筹与管理, 2010, 20(5):8-13. YAO Fengmin, TENG Chunxian, CHEN Zhaobo, et al. A bilevel supply chain network equilibrium model [J]. Operations Research and Management Science, 2010, 20(5):8-13.
[21] 周岩, 蒋京龙,孙浩,等. 面向能源和低碳发展的多准则供应链网络均衡[J]. 系统工程学报, 2014, 29(5):652-661. ZHOU Yan, JIANG Jinglong, SUN Hao, et al. Multicriteria supply chain network equilibrium with energy and low carbon development [J]. Journal of Systems Engineering, 2014, 29(5):652-661.
[22] 何丽红, 廖茜, 刘蒙蒙, 等. 两层供应链系统最优广告努力水平与直接价格折扣的博弈分析[J]. 中国管理科学, 2017, 25(2):130-137. HE Lihong, LIAO Qian, LIU Mengmeng, et al. A game analysis of optimal advertising effort and direct price discount strategy for the two-level supply chain [J]. Chinese Journal of Management Science, 2017, 25(2):130-138.
[23] HO T, SU Xuanming, WU Yaozhong. Distributional and peer-induced fairness in supply chain contract design[J]. Production and Operations Management, 2014, 23(2):161-175.
[24] LI K J, JAIN S. Behavior-based pricing: an analysis of the impact of peer-induced fairness [J]. Management Science, 2016, 62(9):2705-2721.
[25] NIE Tengfei, DU Shaofu. Dual-fairness supply chain with quantity discount contracts [J]. European Journal of Operational Research, 2017, 258: 491-500.
[26] 浦徐进,诸葛瑞杰,范旺达. 考虑横向和纵向公平的双渠道供应链均衡策略[J]. 系统工程学报, 2014, 29(4):527-536. PU Xujin, ZHUGE Ruijie, FAN Wangda. Impact of horizontal fairness and vertical fairness on strategies in dual-channel supply chain[J]. Journal of Systems Engineering, 2014, 29(4):527-536.
[27] NAGURNEY A, DONG June, ZHANG Ding. A supply chain network equilibrium model [J]. Transportation Research Part E, 2002, 38(5): 281-303.
[28] 段丁钰, 周岩, 张华民,等. 考虑零售商不公平厌恶行为的供应链网络均衡研究[J]. 山东大学学报(理学版), 2017, 52(5):58-69. DUAN Zhengyu, ZHOU Yan, ZHANG Huamin, et al. The study of the supply chain network equilibrium model with retailers inequity aversion behavior[J]. Journal of Shandong University(Natural Science), 2017, 52(5):58-69.
[29] KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications [M]. New York: Academic Press, 1980.
[30] LUO Zhiquan, PANG Jongshi, RALPH D. Mathematical programs with equilibrium constraints[J]. International Symposium on Mathematical Programming, 1996, 20(5):2504-2539.
[31] LIU G S, HAN J Y, ZHANG J Z. Exact penalty functions for convex bilevel programming problems[J]. Journal of Optimization Theory & Applications, 2001, 110(3):621-643.
[1] 张克勇,李江鑫,姚建明,李春霞. 竞争型零售商具公平敏感性的供应链决策[J]. 山东大学学报(理学版), 2018, 53(9): 83-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!