您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 59-64.doi: 10.6040/j.issn.1671-9352.0.2015.473

• • 上一篇    下一篇

立方圈的(d,1)-全标号

白丹,左连翠*   

  1. 天津师范大学数学科学学院, 天津 300387
  • 收稿日期:2015-10-09 出版日期:2016-04-20 发布日期:2016-04-08
  • 通讯作者: 左连翠(1964— ), 女, 博士, 教授, 硕士生导师, 研究方向为图论及其应用. E-mail:lczuo@163.com E-mail:taiyuanbaidan@126.com
  • 作者简介:白丹(1990— ), 女, 硕士研究生, 研究方向为图论及其应用. E-mail:taiyuanbaidan@126.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(61103073)

The(d,1)-total labelling of the cube of cycles

BAI Dan, ZUO Lian-cui*   

  1. College of Mathematical Science, Tianjin Normal University, Tianjin 300387, China
  • Received:2015-10-09 Online:2016-04-20 Published:2016-04-08

摘要: 一个图G(d,1)-全标号是V(G)∪E(G)到整数集合的一个映射f, 使得|f(x)-f(y)|≥{1, 若顶点xy相邻,1, 若边xy相邻,d, 若顶点x和边y相关联主要研究了立方圈C3l (d,1)-全标号, 得到了d限制条件下立方圈C3l (d,1)-全数的确切值

关键词: 立方圈, (d, 1)-全标号, 1)-全数, (d

Abstract: A(d,1)-total labelling of G is an integer-valued function f defined on the set V(G)∪E(G) such that|f(x)-f(y)|≥{1, if vertices x and y are adjacent,1, if edges x and y are adjacent,d, if vertex x and edge y are incident.The(d,1)-total labelling of the cube of cycles are studied, and its(d,1)-total number under the restricted conditions for d is obtained.

Key words: cube of cycles, (d,1)-total number, (d,1)-total labelling

中图分类号: 

  • O157
[1] CHEN Dong, WANG Weifan.(2,1)-total labelling of outerplanar graphs[J]. Discrete Applied Mathematics, 2006, 306(12):1217-1231.
[2] SHAO Zhendong, SOLIS-OBA R. L( 2, 1 )- labelings on the modular product of two graphs[J]. Theoretical Computer Science, 2013, 487(2):74-81.
[3] KARST N, OEHRLEIN J, TROXELL D S. The minimum span of L(2,1)-labellings of generalized flowers[J]. Discrete Applied Mathematics, 2015, 181:139-151.
[4] HUANG Yuanzhen, CHIANG Chunying, HUANG Lianghao, et al. On L(2, 1)-labelling of generalized Petersen graphs[J]. Journal of Combinatorial Optimization, 2012, 24(3):266-279.
[5] LU Changhong, ZHOU Qing. Path covering number and L(2, 1)-labeling number of graphs[J]. Discrete Applied Mathematics, 2013, 161(13-14):2062-2074.
[6] ZHU Haiyang, HOU Lifeng, CHEN Wei. The L(p, q)-labelling of planer graphs without 4-cycles[J]. Discrete Applied Mathematics, 2014, 162(1):355-363.
[7] HAVET F, YU M L.(p, 1)-total labelling of graphs[J]. Disc Math, 2008, 308:496-513.
[8] CHIA M L, KUO D, YAN J H, et al.(p, q)-total labeling of complete graphs[J]. Journal of Combinatorial Optimization, 2013, 25(4):543-561.
[9] SUN Lin, WU Jianliang. On(p, 1)-total labelling of planer graphs[J]. Journal of Combinatorial Optimization, 2015:1-9.
[10] WEST D B. Introduction to graph theory[M]. 2 ed. Upper Saddle River: Prentice-Hall, 2001.
[11] BONDY J A, MURTY U S R. Graph theory and its applications[M]. New York: The Macmillan Press, 1976.
[1] 周伟娜,左连翠*. 几类图的笛卡尔积图的(d,1)-全标号[J]. 山东大学学报(理学版), 2014, 49(04): 24-28.
[2] 李甫问 孔鹏志. 多目标DEA模型的多阶段评价分析[J]. J4, 2010, 45(2): 31-36.
[3] 张焕,左连翠*. 关于图的(d,1)-全标号[J]. J4, 2010, 45(12): 1-4.
[4] 张苏梅,马巧灵,赵海霞. 路与圈的积图的(d,1)全标号[J]. J4, 2009, 44(4): 37-42 .
[5] 马巧灵,张苏梅 . 一类二部图的(d,1)-全标号[J]. J4, 2008, 43(2): 109-112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!