您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (10): 54-58.doi: 10.6040/j.issn.1671-9352.0.2015.496

• • 上一篇    下一篇

局部对称伪黎曼流形中的2-调和类时子流形

何超,李影,宋卫东*   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241000
  • 收稿日期:2015-10-20 出版日期:2016-10-20 发布日期:2016-10-17
  • 通讯作者: 宋卫东(1958— ), 男, 教授, 研究方向为微分几何. E-mail:swd56@sina.com E-mail:362439120@qq.com
  • 作者简介:何超(1992— ), 男, 硕士研究生, 研究方向为微分几何. E-mail:362439120@qq.com
  • 基金资助:
    安徽师范大学研究生科研创新与实践项目(2015cxsj108zd)

On the 2-harmonic timelike submanifolds in locally symmetric pseudo-riemannian manifolds

HE Chao, LI Ying, SONG Wei-dong*   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2015-10-20 Online:2016-10-20 Published:2016-10-17

摘要: 利用活动标架法,研究了局部对称伪黎曼流形中的2-调和类时子流形,得到了这类子流形的Simons型积分不等式以及关于其第二基本形式模长平方的拼挤定理。

关键词: 极大类时, 2-调和类时子流形, 局部对称, 伪黎曼流形

Abstract: Based on the moving frames, the 2-harmonic timelike submanifolds in locally symmetric pseudo-Riemannian manifolds is studied. Also, an integral inequality of Simonss type and a pinching theorem about the squared norm of the second fundamental form in this submanifolds are obtained.

Key words: locally symmetric, 2-harmonic timelike submanifold, maximun timelike, pseudo-Riemannian manifold

中图分类号: 

  • O186.12
[1] EELLS J, LEMAIRE L. Selected topics in harmonic maps[M]. Washington: American Mathematical Society, 1983.
[2] 欧阳崇珍. 伪黎曼空间型的2-调和类空子流形[J]. 数学年刊, 2000, 21(6):649-654. OUYANG Chongzhen. On 2-harmonic space-like submanifolds in pseudo-Riemannian manifolds[J]. Chinese Annals of Mathematics, 2000, 21(6):649-654.
[3] 宋卫东, 江桔丽. 关于局部对称伪黎曼流形中的2-调和类空子流形[J]. 系统科学与数学, 2007, 27(2):170-176. SONG Weidong, JIANG Juli. On 2-harmonic space-like submanifolds of a locally symmetric pseudo-Riemannian manifold[J]. Journal of Systems Science and Complexity, 2007, 27(2):170-176.
[4] 李影, 宋卫东. 局部对称伪Riemann流形中的紧致极大类时子流形[J]. 吉林大学学报(理学版), 2015, 53(3):457-460. LI Ying, SONG Weidong. Maximum timelike submannifold in a locally symmetric pseudo-Riemannian manifold[J]. Journal of Jilin University(Science Edition), 2015, 53(3):457-460.
[5] 沈一兵. 关于伪 Riemmann流形的极大子流形[J]. 杭州大学学报(自然科学版), 1991, 18(4):371-376. SHEN Yibing. On maximal submanifolds in pseudo-Riemannian manifolds[J]. Journal of Hangzhou University(Natural Science), 1991, 18(4):371-376.
[6] 胡有婧, 纪永强. de Sitter空间中的紧致极大类时子流形[J]. 吉林大学学报(理学版), 2014, 52(5):895-900. HU Youjing, JI Yongqiang. The compact timelike submanifolds in the de Sitter space[J]. Journal of Jilin University(Science Edition), 2014, 52(5):895-900.
[7] GOLDBERG S I. Curvature and homology[M]. London: Academic Press, 1962.
[1] 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63.
[2] 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96.
[3] 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!