山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (10): 48-53.doi: 10.6040/j.issn.1671-9352.0.2015.309
张申贵
ZHANG Shen-gui
摘要: 研究了一类Kirchhoff型p(x)-调和方程。利用临界点理论中的喷泉定理,获得了多重解存在的充分条件,推广和改进了一些已有的结果。
中图分类号:
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5:105-116. [2] RUZICKA M. Electrorheologial fluids: modeling and mathematial throry[M]. Berlin: Springer-Verlag, 2000. [3] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66, 4:1383-1406. [4] LIN Lin, TANG Chunlei. Existence and multiplicity of solutions for a class of p(x)-biharmonic equations[J]. Acta Mathematica Scientia, 2013, 33(1):155-170. [5] YIN Honghui, YANG Zuodong. Three solutions for a navier boundary value system involving the(p(x), q(x))-biharmonic operator[J]. British Journal of Mathematics Computer Science, 2013, 3(3):281-290. [6] YIN, Honghui, LIU Ying. Existence of three solutions for a Navier boundary value problem involving the p(x)-biharnonic operator[J]. Bull. Korean Math Soc, 2013, 50(6):1817-1826. [7] AFROUZI G A, MIRZAPOUR M, RADULESCU V D. Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions[J]. Collectanea Mathematica, 2015, 5:1-17. [8] KONG Lingju. Eigenvalues for a fourth order elliptic problem[J]. Proceedings of the American Mathematical Society, 2015, 143(1):249-258. [9] 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. 山东大学学报(理学版), 2012, 47(10):116-120. ZHANG Shengui. Infinitely many solutions for a class of superlinear p(x)-biharmonic equation[J]. Journal of Shandong University(Natural Science), 2012, 47(10):116-120. [10] AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents[J]. Electron J Differential Equations, 2009, 153:1-13. [11] WILLEM M. Minimax theorems[M]. Boston: Birkhauser, 1996. [12] DING Yanheng, LUAN Shixia. Multiple solutions for a class of nonlinear Schr(¨overo)dinger equations[J]. J Differential Equations, 2004, 207:423-457. |
[1] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[2] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[3] | 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54. |
[4] | 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61-68. |
[5] | 张国威1,陈昂2. 初始例函数的游荡域的无穷连通性[J]. 山东大学学报(理学版), 2014, 49(04): 70-73. |
[6] | 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. J4, 2012, 47(10): 116-120. |
[7] | 张申贵. 一类非自治二阶系统的多重周期解[J]. J4, 2011, 46(11): 64-69. |
[8] | 朱海霞1,晏世雷2. 随机晶场作用的Blume-Capel模型的相图研究[J]. J4, 2011, 46(1): 51-55. |
[9] | 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42. |
[10] | 张懿彬 . 带指数增长型Neumann边界条件的Laplace方程解的存在性[J]. J4, 2008, 43(3): 48-53 . |
|