您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 84-89.doi: 10.6040/j.issn.1671-9352.0.2015.575

• • 上一篇    下一篇

基于生灭过程的两斑块种群迁移模型研究

刘华1,谢梅1,蒋芮1,魏玉梅2   

  1. 1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030;2. 西北民族大学实验中心, 甘肃 兰州 730030
  • 收稿日期:2015-11-27 出版日期:2016-08-20 发布日期:2016-08-08
  • 作者简介:刘华(1977— ),男,教授,硕士生导师,研究方向为生态数学及计算机模拟.E-mail:7783360@qq.com并列第一作者:谢梅(1990— ),女,硕士研究生,研究方向为生态数学及计算机模拟.E-mail:790090796@qq.com
  • 基金资助:
    国家自然科学基金资助项目(31260098,11361049,31560127);甘肃省自然科学基金资助项目(145RJZA158,1506RJZA274);西北民族大学研究生科研创新资助项目(Yxm2014171);国家民委中青年英才计划资助项目(〔2014〕121号);2013年西北民族大学创新团队资助项目

The two grids population migration model based on birth-death process

LIU Hua1*, XIE Mei1, JIANG Rui1, WEI Yu-mei2   

  1. 1. School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, Gansu, China;
    2. Experimental Center, Northwest University for Nationalities, Lanzhou 730030, Gansu, China
  • Received:2015-11-27 Online:2016-08-20 Published:2016-08-08

摘要: 建立了两斑块间种群迁移的生灭过程模型,通过与没有迁移的单种群模型对比,分别得到同生境中两斑块种群的极限期望,进而得到单个斑块内种群续存和灭绝的充分条件。研究结果表明,单个斑块内种群数量递减时,邻体斑块中种群个体的迁入减少了物种灭绝风险,有助于种群续存;单个斑块内种群数量递增时,该斑块种群个体的迁出增加了该斑块物种的灭绝风险,不利于种群续存。

关键词: 迁移, 生境, 随机过程, 生灭过程

Abstract: We built the birth and death process model of migration between two populations patches. We get the limit expectation of population in two patches by comparing with the single population model which has not include migration effect, and thus we get the sufficient condition of persistence and extinction of population in single patch. The results show that the immigration of individuals from the neighbor patch not only reduces the risk of population extinction when the number of population in single patch decreased, but also benefit to the population survived. The emigration of individuals to the neighbor patch increased the risk of the population extinction in this patch and go against population survival when the number of population in single patch increased.

Key words: birth and death process, habitat, random process, migration

中图分类号: 

  • O29
[1] BAILEY N T. The elements of stochastic processes with applications to the natural sciences[M].New York:Wiley, 1964.
[2] BAILEY N T. Stochastic birth, death and migration processes for spatially distributed populations [J]. Biometrika, 1968, 55(1):189-198.
[3] ADKE S R. A birth, death and migration process[J]. Journal of Applied Probability, 1969, 6(3):687-691.
[4] USHER M B, WILLIAMSON M H. A deterministic model for handling the birth, death, and migration processes of spatially distributed populations[J].Biometrics, 1970, 26(1):1-12.
[5] DAVIS A W. Some generalizations of baileys birth and death and migration model[J]. Advances in Applied Probability,1970, 2(1):83-109.
[6] CHEN Anyue, LIU Kai. Birth-death processes with an instantaneous reflection barrier[J]. Journal of Applied Probability, 2003, 40(1):163-179.
[7] WITTMANN M J. Ecological and genetic effects of introduced species on their native competitors[J]. Theoretical Population Biology, 2012, 84(5):25-35.
[8] ROSS S M. Introduction to probability models[M]. 11th Edition. New York: Academic Press, 2014.
[1] 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23.
[2] 黄宇晴,赵波,肖钰,陶威. 一种基于KVM的vTPM虚拟机动态迁移方案[J]. 山东大学学报(理学版), 2017, 52(6): 69-75.
[3] 孙世昶,林鸿飞,孟佳娜,刘洪波. 面向序列迁移学习的似然比模型选择方法[J]. 山东大学学报(理学版), 2017, 52(6): 24-31.
[4] 胡晓晴, 梁爽爽, 冀美超, 朱长军, 潘丽娜. 染色体驱动蛋白KIF4A抑制胃癌细胞的迁移运动[J]. 山东大学学报(理学版), 2015, 50(11): 1-7.
[5] 温艳清,孟献青,常克亮. 疲劳影响可忽略的聚合马尔可夫可修系统的可靠性分析[J]. J4, 2013, 48(8): 78-82.
[6] 张丰盘1, 汪俭彬2, 杜书德3. 生境丧失对空间囚徒困境博弈的影响[J]. J4, 2012, 47(5): 98-102.
[7] 王德良,李科,陆丽玲. 石门国家森林公园唐鱼生境特征分析[J]. J4, 2012, 47(3): 1-4.
[8] 鲁小云1,杨勇2. 单向S-模糊粗糙集及其应用[J]. J4, 2011, 46(8): 110-113.
[9] 刘宇,吕明伟,李维佳,李文涛. 基于物种的自适应多模态粒子群优化算法[J]. J4, 2011, 46(5): 91-96.
[10] 于秀清1,2,董立华1,侯玉梅1,范新亚1. PpF(f) -集合及其概率特征[J]. J4, 2010, 45(9): 49-52.
[11] 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13-17.
[12] 岳德权,马金旺,马明建,余 . 具有备用服务员的可修排队系统分析[J]. J4, 2009, 44(3): 39-44 .
[13] 吴修国 曾广周. 目标描述逻辑研究[J]. J4, 2009, 44(11): 68-74.
[14] 刘纪芹,裴海峰 . 双向S-粗糙模糊集及其应用[J]. J4, 2008, 43(2): 19-22 .
[15] 苏芬肖 陈保会. β-粗积分[J]. J4, 2008, 43(12): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!