山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (10): 41-47.doi: 10.6040/j.issn.1671-9352.0.2015.613
宋萌萌,尚海锋
SONG Meng-meng, SHANG Hai-feng
摘要: 研究了一类具强耦合源的退化抛物方程组的Cauchy问题,其中初值为Radon测度。当指标满足一定范围时,克服了方程退化性与强耦合源同时存在带来的困难, 从而得到了解的存在性。还进一步证明了指标的限制范围对解的存在性来说是最优的。
中图分类号:
[1] BEBERNESS J, EBERLY D. Mathematical problems from combustion theory[M]. New York: Springer-Verlag, 1989. [2] GALAKTIONOV V A, KURDYUMOV S P, SAMARSKII A A. A parabolic system of quasi-linear equations I[J]. Differential Equations, 1983, 19: 1558-1571. [3] GALAKTIONOV V A, KURDYUMOV S P, SAMARSKII A A. A parabolic system of quasi-linear equations II[J]. Differential Equations, 1985, 21: 1049-1062. [4] QUITTNER P, SOUPLET P. Suplinear parabolic problems:blow-up,global existence and steady states[M]. Germany: Birkhäuser-Verlag, 2007. [5] 伍卓群, 赵俊宁, 尹景学,等. 非线性扩散方程[M]. 吉林:吉林大学出版社, 2001. WU Zhuoqun, ZHAO Junning, YIN Jingxue, et al. Nonlinear diffusion equation[M]. Jilin: Jilin University Press, 2001. [6] AMANN H, QUITTNER P. Semilinear parabolic equations involving measures and low regularity data[J]. Transactions of the American Mathematical Society, 2004, 356(3):1045-1119. [7] BARAS P, PIERRE M. Problèmes paraboliques semi-linéaires avec données mesures[J]. Applicable Analasis, 1984, 18(1-2): 111-149. [8] BARAS P, PIERRE M. Critère dexistence de solutions positives pour des équations semi-linéaires non nonotones[J]. Annales de linstitut Henri Poincaré(C)Analyse non Linéaire, 1985, 2: 185-212. [9] SHANG Haifeng. Cauchy problem and initial traces for fast diffusion equation with space-dependent source[J]. Zeitschrift für Angewandte Mathematik und Physik, 2013, 64(3): 785-798. [10] ANDREUCCI D, DIBENEDETTO E. On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources[J]. Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 1991, 18(3):95-105. [11] ANDREUCCI D. Degenerate parabolic equations with initial data measures[J]. Transactions of the American Mathematical Society, 1997, 349(10): 3911-3923. [12] ANDREUCCI D, HERRERO M A, VELÁZQUEZ J J L. Liouville theorems and blow up behavior in semilinear reaction-diffusion systems[J]. Annales de linstitut Henri Poincaré(C)Analyse non Linéaire, 1997, 14(1): 1-53. [13] ESCOBEDO M, HERRER0 M A. Boundedness and blow up for a semilinear reaction-diffusion system[J]. Journal of Differential Equations, 1991, 89: 176-202. [14] ESCOBEDO M, LEVINE H A. Explosion et existence globale pour un système faiblement couplé dèquations de réaction diffusion[J]. Comptes Rendus de lAcadémie des Sciences-Série I-Mathématics, 1992, 314: 735-739. [15] ESCOBEDO M, LEVINE H A. Critical Blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations[J]. Archive for Rational Mechanics and Analysis, 1995, 129: 47-100. [16] ANDREUCCI D. New results on the Cauchy problem for parabolic systems and equations with strongly nonlinear sources[J]. Manuscripta Mathematica, 1992, 77: 127-159. [17] LADYZHENSKAJA O A, SOLONNIKOV V A, URALCEVA N N. Linear and quasilinear equations of parabolic type[M]. Providence, RI:American Mathematical Society, 1968. [18] CHEN Yazhe, DI BENEDETTO E. H(¨overo)lder estimates of solutions of singular parabolic equations with measurable coefficients[J]. Archive for Rational Mechanics and Analysis, 1992, 118: 257-271. [19] DI BENEDETTO E. Continuity of weak solutions to a general porous medium equation[J]. Indiana University Mathematics Journal, 1983, 32: 83-118. |
[1] | 成军祥,尚海锋. 具时间依赖源的双非线性抛物方程的Cauchy问题[J]. J4, 2013, 48(8): 50-55. |
[2] | 邓利华,尚海锋. 具强非线性源的多孔介质方程的Cauchy 问题[J]. J4, 2012, 47(8): 50-54. |
|