山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (3): 32-37.doi: 10.6040/j.issn.1671-9352.0.2016.445
于文静,毕东旭,颜学峰*
YU Wen-jing, BI Dong-xu, YAN Xue-feng*
摘要: 基于图像结构稀疏性定义了图像的结构稀疏算子,利用稀疏算子实现原图像到结构图像的映射。根据仿射相似图像具有相同结构的偏移量成稀疏分布的特点,统计相同结构偏移量的分布特征,获得破损区域的最优匹配信息。实验结果表明,该算法可以实现结构的自动匹配,在仿射破损图像的修复中更有效。
中图分类号:
[1] BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting [C] // Proceedings of ACM SIGGRAPH. New York: ACM, 2000: 417-424. [2] GULERYUZ O G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory[J]. IEEE Transactions on Image Processing, 2006, 15(3):539-554. [3] FADILI M J, STARCK J, MURTAGH F. Inpainting and zooming using sparse representations[J]. The Computer Journal, 2009, 52(1):64-79. [4] MAIRAL J, ELAD M, SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1):53-69. [5] ELAD M, AHARON M. Image denoising via learned dictionaries and sparse representation[C] // Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006: 895-900. [6] SHEN Bin, HU Wei, ZHANG Yimin, et al. Image inpainting via sparse representation[C] // Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington: IEEE Computer Society, 2009:697-700. [7] XU Zongben, SUN Jian. Image inpainting by patch propagation using patch sparsity [J]. IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165. [8] 吴亚东,张红英,吴斌.数字图像修复技术[M].北京:科学出版社,2010:87-88. WU Yadong, ZHANG Hongying, WU Bin. Digital image inpainting[M ].Beijing: Science Press, 2010:87-88. [9] EFROS A A, LEUNG T K. Texture synthesis by non-parametric sampling[C] // Proceedings of the 17th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society, 1999:1033-1038. [10] 李志丹,和红杰,尹忠科,等.基于块结构稀疏度的自适应图像修复算法[J].电子学报,2013,41(3):549-554. LI Zhidan, HE Hongjie, YIN Zhongke, et al. Adaptive image inpainting algorithm based on patch structure sparsity[J].Acta Electronica Sinica, 2013, 41(3):549-554. [11] 孙玉宝,韦志辉,肖亮.多形态稀疏性正则化的图像超分辨率算法[J].电子学报,2010,38(12):2898-2902. SUN Yubao, WEI Zhihui, XIAO Liang. Multimorphology sparsity regularized image super-resolution [J].Acta Electronica Sinica, 2010, 38(12):2898-2902. [12] 张岩,孙正兴,姚伟.基于方向经验模型分解的图像修复方法[J]. 电子学报,2010,38(2):257-262. ZHANG Yan, SUN Zhengxing, YAO Wei. Image completion based on direction empirical mode decomposition[J]. Acta Electronica Sinica, 2010, 38(2):257-262. [13] JONGIN S, SEUNGRYONG K, KWANGHOON S. Fast affine-invariant image matching based on global Bhattacharyya measure with adaptive tree[C] // Proceedings of 2015 IEEE International Conference on Image Processing. New York:IEEE, 2015: 3190 -3194. [14] 任澍,唐向宏,康佳伦. 纹理和边缘特征相结合的图像修复算法[J]. 计算机辅助设计与图形学学报, 2013, 25(11):1682-1693. REN Shu, TANG Xianghong, KANG Jialun. An image inpainting algorithm combined with texture and edge features[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(11): 1682-1693. [15] KOSCHAN A, ABIDI M.Detection and classification of edges in color images[J]. IEEE Signal Processing, 2005, 22(1):64-73. [16] CANNDY J A. Computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698. [17] HE Kai, SUN J. Statistics of patch offsets for image completion[C] // Proceeding of the 12th European Conference on Computer Vision. Berlin: Springer, 2012:16-29. [18] CRIMINISI A, PEREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J].IEEE Transactions on Image Processing, 2004, 13(9):1200-1212. [19] WANG Zhou, BOVIK A C, SHEIKH H R. Image quality assessment:from error visibility to structual similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. |
[1] | 龚双双,陈钰枫,徐金安,张玉洁. 基于网络文本的汉语多词表达抽取方法[J]. 山东大学学报(理学版), 2018, 53(9): 40-48. |
[2] | 余传明,左宇恒,郭亚静,安璐. 基于复合主题演化模型的作者研究兴趣动态发现[J]. 山东大学学报(理学版), 2018, 53(9): 23-34. |
[3] | 严倩,王礼敏,李寿山,周国栋. 结合新闻和评论文本的读者情绪分类方法[J]. 山东大学学报(理学版), 2018, 53(9): 35-39. |
[4] | 原伟,唐亮,易绵竹. 基于本体的俄文新闻话题检测设计与实现[J]. 山东大学学报(理学版), 2018, 53(9): 49-54. |
[5] | 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1-12. |
[6] | 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. |
[7] | 张军,李竞飞,张瑞,阮兴茂,张烁. 基于网络有效阻抗的社区发现算法[J]. 山东大学学报(理学版), 2018, 53(3): 24-29. |
[8] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[9] | 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45. |
[10] | 王彤,马延周,易绵竹. 基于DTW的俄语短指令语音识别[J]. 山东大学学报(理学版), 2017, 52(11): 29-36. |
[11] | 张晓东,董唯光,汤旻安,郭俊锋,梁金平. 压缩感知中基于广义Jaccard系数的gOMP重构算法[J]. 山东大学学报(理学版), 2017, 52(11): 23-28. |
[12] | 孙建东,顾秀森,李彦,徐蔚然. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7-12. |
[13] | 王凯,洪宇,邱盈盈,王剑,姚建民,周国栋. 一种查询意图边界检测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 13-18. |
[14] | 张帆,罗成,刘奕群,张敏,马少平. 异质搜索环境下的用户偏好性预测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 26-34. |
[15] | 杨艳,徐冰,杨沐昀,赵晶晶. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52(9): 19-25. |
|