您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 50-55.doi: 10.6040/j.issn.1671-9352.0.2016.558

• • 上一篇    下一篇

代数和对数奇异Fourier积分的最速下降方法

孔艺婷,王同科*   

  1. 天津师范大学数学科学学院, 天津 300387
  • 收稿日期:2016-11-25 出版日期:2017-10-20 发布日期:2017-10-12
  • 通讯作者: 王同科(1965— ),男,博士,教授,研究方向为奇异积分计算、偏微分方程数值解法. E-mail:wangtke@sina.com E-mail:1725949063@qq.com
  • 作者简介:孔艺婷(1993— ),女,硕士研究生,研究方向为奇异积分计算. E-mail:1725949063@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11471166)

The steepest descent method for Fourier integrals involving algebraic and logarithmic singular factors

KONG Yi-ting, WANG Tong-ke*   

  1. School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China
  • Received:2016-11-25 Online:2017-10-20 Published:2017-10-12

摘要: 针对有限和半无限区间上包含代数和对数奇异因子的振荡型Fourier积分,通过改变积分路径,将振荡因子变换为复平面上的快速衰减因子,使得积分不再振荡。对于转换后无穷区间上的奇异积分,可以使用修正的Gauss-Legendre求积方法高效计算,数值算例验证了理论分析的正确性和方法的高精度。

关键词: 有限或半无限区间, 振荡型Fourier积分, 代数和对数奇异, 最速下降方法

Abstract: For the oscillatory Fourier integral over finite or semi-infinite interval that has algebraic and logarithmic singularities at the endpoints, this paper converts the oscillatory factor to fast decaying factor by deforming the path of integration into complex plane such that the integral never oscillates along the new path. For the transformed singular integrals over semi-infinite interval, the modified Gauss-Legendre quadrature formula can be used to evaluate them efficiently. Numerical examples verify the correctness of the theoretical analysis and the high accuracy of the method.

Key words: oscillatory Fourier integral, the steepest descent method, finite or semi-infinite interval, algebraic and logarithmic singularity

中图分类号: 

  • O174.22
[1] 向淑晃. 一些高振荡积分、高振荡积分方程的高性能计算[J]. 中国科学(数学), 2012, 42(7): 651-670. XIANG Shuhuang. Efficient methods for some highly oscillatory integrals and integral equations[J]. Scientia Sinica(Mathematica), 2012, 42(7): 651-670.
[2] LEVIN D. Analysis of a collocation method for integrating rapidly oscillatory functions[J]. Journal of Computational and Applied Mathematics, 1997, 78(1): 131-138.
[3] OLVER S. Moment-free numerical integration of highly oscillatory functions[J]. IMA Journal of Numerical Analysis, 2006, 26(2): 213-227.
[4] PIESSENS R, BRANDERS M. On the computation of Fourier transforms of singular functions[J]. Journal of Computational and Applied Mathematics, 1992, 43(1-2): 159-169.
[5] KANG Hongchao, LING Chen. Computation of integrals with oscillatory singular factors of algebraic and logarithmic type[J]. Journal of Computational and Applied Mathematics, 2015, 285: 72-85.
[6] ISERLES A, NØRSETT S P. Efficient quadrature of highly oscillatory integrals using derivatives[J]. Proceedings of the Royal Society A, 2005, 461(2057): 1383-1399.
[7] XIANG Shuhuang. Efficient Filon-type methods for ∫baf(x)eiωg(x)dx[J]. Numerische Mathematik, 2007, 105(4): 633-658.
[8] HUYBRECHS D, VANDEWALLE S. On the evaluation of highly oscillatory integrals by analytic continuation[J]. SIAM Journal on Numerical Analysis, 2006, 44(3): 1026-1048.
[9] KANG Hongchao, SHAO Xinping. Fast computation of singular oscillatory Fourier transforms[J]. Abstract and Applied Analysis, 2014, article ID: 984834: 1-8.
[10] MAJIDIAN H. Numerical approximation of highly oscillatory integrals on semi-finite intervals by steepest descent method[J]. Numerical Algorithms, 2013, 63(3): 537-548.
[11] MILOVANOVIC G V. Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures[J]. Computers and Mathematics with Applications, 1998, 36(8): 19-39.
[12] KANG Hongchao, XIANG Shuhuang. On the calculation of highly oscillatory integrals with an algebraic singularity[J]. Applied Mathematics and Computation, 2010, 217(8): 3890-3897.
[13] 马云云, 许跃生. 数值振荡积分: 基于奇性和波数的积分区间剖分法[J]. 中国科学(数学), 2015, 45(8): 1133-1152. MA Yunyun, XU Yuesheng. Computing oscillatory integrals: partition of the integration interval based on the singularity and the wave number of the integrand[J]. Scientia Sinica(Mathematica), 2015, 45(8): 1133-1152.
[14] WANG Tongke, LIU Zhifang, ZHANG Zhiyue. The modified composite Gauss type rules for singular integrals using Puiseux expansions[J]. Mathematics of Computation, 2017, 86(303): 345-373.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!