您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 42-49.doi: 10.6040/j.issn.1671-9352.0.2016.594

• • 上一篇    下一篇

一类模糊积分微分方程的模糊微分变换法

张琬迪,宋晓秋*,吴尚伟   

  1. 中国矿业大学数学学院, 江苏 徐州 221116
  • 收稿日期:2016-11-25 出版日期:2017-10-20 发布日期:2017-10-12
  • 通讯作者: 宋晓秋(1963— ),男,教授,研究方向为应用泛函分析和模糊数学原理及其应用.E-mail:songxiaoqiu668@163.com E-mail:zhangwandixf@163.com
  • 作者简介:张琬迪(1992— ),女,硕士研究生,研究方向为模糊数学原理及其应用.E-mail:zhangwandixf@163.com
  • 基金资助:
    国家自然科学基金资助项目(51374199)

Application of fuzzy differential transform method for solving fuzzy integral differential equation

  1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2016-11-25 Online:2017-10-20 Published:2017-10-12

摘要: 根据模糊数相关知识和模糊微分变换的定义,给出了一阶导数f '(x)与f(x)对应的模糊微分变换函数之间的关系,以及二重积分函数f(x)与被积函数u(x)和g(x)对应的模糊微分变换函数F(k)和U(k)与G(k)之间的关系,进而给出求解模糊积分微分方程的相关结果。

关键词: 模糊微分变换, 模糊数, 模糊积分微分方程, FDTM, H-导数

Abstract: According to the definitions of fuzzy number and fuzzy differential transformation, the relationship between the differential transform of the functions f '(x) and f(x)is given, and the relationship between F(k), U(k) and G(k), the differential transform of double function f(x), integrand u(x)and g(x), is given, then the solution of fuzzy integral differential equation is obtained.

Key words: fuzzy differential transform, FDTM, H-derivative, fuzzy number, fuzzy integral differential equation

中图分类号: 

  • O159
[1] SONG Xiaoqiu, PAN Zhi. Fuzzy algebra in triangular norm system[J]. Fuzzy Sets and Systems, 1998, 93(3):331-335.
[2] LI Dongqing, SONG Xiaoqiu, YUE Tian, et al. Generalization of the Lyapunov type inequalities for pseudo-integrals[J]. Applied Mathematics and Computation, 2014, 241: 64-69.
[3] YANG Xiuli, SONG Xiaoqiu, LU Wei. Sandors type inequality for fuzzy integrals[J]. Journal of Nanjing University:Mathematical Biquarterly, 2015, 32(2):144-156.
[4] SONG Yazhi, SONG Xiaoqiu, LI Dongqing, et al. Berwald type inequality for extremal universal integral based on(α, m)-concave functions[J]. Journal of Mathematical Inequalities, 2015, 9(1): 1-15.
[5] 卢威, 宋晓秋, 黄雷雷. 基于模糊积分的Hermite-Hadamard和Sandaor类型的不等式[J]. 山东大学学报(理学版), 2016, 51(8):22-28. LU Wei, SONG Xiaoqiu, HUANG Leilei. Inequalities of Hermite-Hadamard and Sandaor for fuzzy integral[J]. Journal of Shandong University(Natural Science), 2016, 51(8):22-28.
[6] LU Wei, SONG Xiaoqiu, YANG Xiuli. Inequalities of Barnes-Godunova-Levin and Lyapunov type for Interval-valued measures based on pseudo-integrals[J]. Journal of Nanjing University: Mathematical Biquarterly, 2016, 33(1):40-56.
[7] 赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988. ZHAO Jiakui. Differential transformation and its application for electrical circuits[M]. Wuhan: Huazhong University Press, 1988.
[8] 吴从忻, 马明. Fuzzy集值映射的级数积分及积分方程[J]. 哈尔滨工业大学学报, 1990, 21(5):11-19. WU Congxin, MA Ming. On the integrals series and integral equations of fuzzy set-valued functions[J]. Journal of Harbin Institute of Technology, 1990, 21(5):11-19.
[9] BEDE B. Quadrature rules for integrals of fuzzy-number-valued functions[J]. Fuzzy Sets and Systems, 2004, 145(3): 359-380.
[10] FRIEDMAN M, MA Ming, KANDEL A. Numerical methods for calculating the fuzzy integral[J]. Fuzzy Sets and Systems, 1996, 83(1):57-62.
[11] FRIEDMAN M, MA Ming, KANDEL A. Numerical solution of fuzzy differential and integral equations[J]. Fuzzy Sets and Systems, 1999, 106(1):35-48.
[12] DUBOIS D, PRADE H. The mean value of a fuzzy number[J]. Fuzzy Sets and System, 1987, 24(3):279-300.
[13] HEILPERN S. The expected value of a fuzzy number[J]. Fuzzy Sets and Systems, 1992, 47(11):81-86.
[14] MARYAM MOSLEH, MAHMOOD OTADI. Approximate solution of fuzzy differential equations under generalized differentiability[J]. Applied Mathematical Modelling, 2015, 39(10-11):3003-3015.
[15] MA Ming, FRIEDMAN M, KANDEL A. A new fuzzy arithmetic[J]. Fuzzy Sets and System, 1999, 108(1):83-90.
[16] PURI M L, RALESCU D. Differential of fuzzy function[J]. Journal of Mathematical Analysis and Applications, 1983, 91(2):552-558.
[17] CHALCO-CANO Y, ROMAN-FLORES H. On new solutions of fuzzy differential equations[J]. Chaos, Solitons and Fractals, 2006, 38(1):112-119.
[18] SHELDON S L Chang, ZADEH L, LOFTI A. On fuzzy mapping and control[J]. Systems, Man and Cybernetics, IEEE Transactions on, 1972, 2(1):30-34.
[19] ALLAHVIRANLOO T, KIANI N A, MOTAMEDI M. Solving fuzzy differential equations by differential transformation method[J]. Information Sciences, 2009, 179(7):956-966.
[20] BEDE B, RUDAS I J, BENCSIK A L. First order linear fuzzy differential equations under generalized differentiability[J]. Information Sciences, 2007, 177(7):1648-1662.
[21] BEDE B, GAS G l. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations[J]. Fuzzy Sets and Systems, 2005, 151(3):581-599.
[22] ODIBAT Z, MOMANI S, ERTURK V S. Generalized differential transform method: application to differential equations of fractional order[J]. Applied Mathematics and Computation, 2008, 197(2):467-477.
[23] SALAHSHOUR S, ALLAHVIRANLOO T. Application of fuzzy differential transform method for solving fuzzy Volterra integral equations[J]. Applied Mathematical Modelling, 2013, 37(3):1016-1027.
[24] KALEVA O.Fuzzy differential equations[J]. Fuzzy Sets and Systems, 1987, 24(3):301-317.
[1] 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72-81.
[2] 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97.
[3] 巩增泰,刘晓霞. 模糊数列的理想统计收敛和理想缺项统计收敛[J]. J4, 2012, 47(6): 111-116.
[4] 姜家涛,刘志杰*,谢晓尧. 基于模糊神经网络集成的入侵检测模型[J]. J4, 2011, 46(9): 95-98.
[5] 高山林 李健 阮小葭. 基于理想点的模糊数排序方法[J]. J4, 2009, 44(8): 86-89.
[6] 刘培德,张 新 . 建筑企业融资方案模糊多目标评价研究[J]. J4, 2008, 43(11): 22-26 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!