山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 42-49.doi: 10.6040/j.issn.1671-9352.0.2016.594
张琬迪,宋晓秋*,吴尚伟
摘要: 根据模糊数相关知识和模糊微分变换的定义,给出了一阶导数f '(x)与f(x)对应的模糊微分变换函数之间的关系,以及二重积分函数f(x)与被积函数u(x)和g(x)对应的模糊微分变换函数F(k)和U(k)与G(k)之间的关系,进而给出求解模糊积分微分方程的相关结果。
中图分类号:
[1] SONG Xiaoqiu, PAN Zhi. Fuzzy algebra in triangular norm system[J]. Fuzzy Sets and Systems, 1998, 93(3):331-335. [2] LI Dongqing, SONG Xiaoqiu, YUE Tian, et al. Generalization of the Lyapunov type inequalities for pseudo-integrals[J]. Applied Mathematics and Computation, 2014, 241: 64-69. [3] YANG Xiuli, SONG Xiaoqiu, LU Wei. Sandors type inequality for fuzzy integrals[J]. Journal of Nanjing University:Mathematical Biquarterly, 2015, 32(2):144-156. [4] SONG Yazhi, SONG Xiaoqiu, LI Dongqing, et al. Berwald type inequality for extremal universal integral based on(α, m)-concave functions[J]. Journal of Mathematical Inequalities, 2015, 9(1): 1-15. [5] 卢威, 宋晓秋, 黄雷雷. 基于模糊积分的Hermite-Hadamard和Sandaor类型的不等式[J]. 山东大学学报(理学版), 2016, 51(8):22-28. LU Wei, SONG Xiaoqiu, HUANG Leilei. Inequalities of Hermite-Hadamard and Sandaor for fuzzy integral[J]. Journal of Shandong University(Natural Science), 2016, 51(8):22-28. [6] LU Wei, SONG Xiaoqiu, YANG Xiuli. Inequalities of Barnes-Godunova-Levin and Lyapunov type for Interval-valued measures based on pseudo-integrals[J]. Journal of Nanjing University: Mathematical Biquarterly, 2016, 33(1):40-56. [7] 赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988. ZHAO Jiakui. Differential transformation and its application for electrical circuits[M]. Wuhan: Huazhong University Press, 1988. [8] 吴从忻, 马明. Fuzzy集值映射的级数积分及积分方程[J]. 哈尔滨工业大学学报, 1990, 21(5):11-19. WU Congxin, MA Ming. On the integrals series and integral equations of fuzzy set-valued functions[J]. Journal of Harbin Institute of Technology, 1990, 21(5):11-19. [9] BEDE B. Quadrature rules for integrals of fuzzy-number-valued functions[J]. Fuzzy Sets and Systems, 2004, 145(3): 359-380. [10] FRIEDMAN M, MA Ming, KANDEL A. Numerical methods for calculating the fuzzy integral[J]. Fuzzy Sets and Systems, 1996, 83(1):57-62. [11] FRIEDMAN M, MA Ming, KANDEL A. Numerical solution of fuzzy differential and integral equations[J]. Fuzzy Sets and Systems, 1999, 106(1):35-48. [12] DUBOIS D, PRADE H. The mean value of a fuzzy number[J]. Fuzzy Sets and System, 1987, 24(3):279-300. [13] HEILPERN S. The expected value of a fuzzy number[J]. Fuzzy Sets and Systems, 1992, 47(11):81-86. [14] MARYAM MOSLEH, MAHMOOD OTADI. Approximate solution of fuzzy differential equations under generalized differentiability[J]. Applied Mathematical Modelling, 2015, 39(10-11):3003-3015. [15] MA Ming, FRIEDMAN M, KANDEL A. A new fuzzy arithmetic[J]. Fuzzy Sets and System, 1999, 108(1):83-90. [16] PURI M L, RALESCU D. Differential of fuzzy function[J]. Journal of Mathematical Analysis and Applications, 1983, 91(2):552-558. [17] CHALCO-CANO Y, ROMAN-FLORES H. On new solutions of fuzzy differential equations[J]. Chaos, Solitons and Fractals, 2006, 38(1):112-119. [18] SHELDON S L Chang, ZADEH L, LOFTI A. On fuzzy mapping and control[J]. Systems, Man and Cybernetics, IEEE Transactions on, 1972, 2(1):30-34. [19] ALLAHVIRANLOO T, KIANI N A, MOTAMEDI M. Solving fuzzy differential equations by differential transformation method[J]. Information Sciences, 2009, 179(7):956-966. [20] BEDE B, RUDAS I J, BENCSIK A L. First order linear fuzzy differential equations under generalized differentiability[J]. Information Sciences, 2007, 177(7):1648-1662. [21] BEDE B, GAS G l. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations[J]. Fuzzy Sets and Systems, 2005, 151(3):581-599. [22] ODIBAT Z, MOMANI S, ERTURK V S. Generalized differential transform method: application to differential equations of fractional order[J]. Applied Mathematics and Computation, 2008, 197(2):467-477. [23] SALAHSHOUR S, ALLAHVIRANLOO T. Application of fuzzy differential transform method for solving fuzzy Volterra integral equations[J]. Applied Mathematical Modelling, 2013, 37(3):1016-1027. [24] KALEVA O.Fuzzy differential equations[J]. Fuzzy Sets and Systems, 1987, 24(3):301-317. |
[1] | 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72-81. |
[2] | 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97. |
[3] | 巩增泰,刘晓霞. 模糊数列的理想统计收敛和理想缺项统计收敛[J]. J4, 2012, 47(6): 111-116. |
[4] | 姜家涛,刘志杰*,谢晓尧. 基于模糊神经网络集成的入侵检测模型[J]. J4, 2011, 46(9): 95-98. |
[5] | 高山林 李健 阮小葭. 基于理想点的模糊数排序方法[J]. J4, 2009, 44(8): 86-89. |
[6] | 刘培德,张 新 . 建筑企业融资方案模糊多目标评价研究[J]. J4, 2008, 43(11): 22-26 . |
|