山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 51-60.doi: 10.6040/j.issn.1671-9352.0.2017.607
李会会,刘希强*,辛祥鹏
LI Hui-hui, LIU Xi-qiang*, XIN Xiang-peng
摘要: 通过应用经典李群方法,得到了变系数的Benjamin-Bona-Mahony-Burgers(BBMB)方程的连续等价变换。从等价代数着手,讨论了该方程的微分不变量,发现此方程不存在零阶微分不变量,但是具有8个相互独立的一阶不变量。利用已经求得的一阶微分不变量对方程进行了群分类。在此过程中,进一步应用上述微分不变量将一般的变系数BBMB方程映射为常系数BBMB方程、Burgers方程、Benjamin-Bona-Mahony(BBM)方程,进而得到了变系数BBMB方程的一些新的精确解,并且作出了特殊变系数BBM方程、Burgers方程的精确解的图像。
中图分类号:
[1] | 张金良, 王跃明, 王明亮, 等. 变系数(2+1)维Broer-Kaup方程的精确解[J].原子与分子物理学报, 2003, 20(1):92-94. ZHANG Jinliang, WANG Yueming, WANG Mingliang, et al. The exact solution of variable coefficient(2+1)dimensional Broer-Kaup equation[J]. Journal of Atomic and Molecular Physics, 2003, 20(1):92-94. |
[2] | 庞晶, 靳玲花, 应孝梅. 利用(G'/G)展开法求解广义变系数Burgers方程[J]. 量子电子学报, 2011, 28(6): 674-681. PANG Jing, JIN Linghua, YING Xiaomei. Solving generalized Burgers equation with variable coefficients by(G'/G)-expansion[J]. Chinese Journal of Quantum Electronics, 2011, 28(6): 674-681. |
[3] | MAO Jiejian, YANG Jianrong. New solitary-wave-like solutions and exact solutions to variable coefficient generalized KdV equation[J]. Acta Phys Sin, 2007, 56(9):5049-5053. |
[4] | SOPHOCLEOUS C. Transformation properties of a variable-coefficient Burgers equation[J]. Chaos, Solitons & Fractals, 2004, 20(5):1047-1057. |
[5] | 田贵辰, 刘希强. 含外力项的广义变系数KdV方程的精确解[J]. 量子电子学报, 2005, 22:339-343. TIAN Guichen, LIU Xiqiang. Exact solutions of the general variable coefficient KdV equation with external force term[J]. Chinese Journal of Quantum Electronics, 2005, 22:339-343. |
[6] | 卢殿臣, 洪宝剑, 田立新. 带强迫项变系数组合KdV方程的显式精确解[J]. 物理学报, 2006, 55(11):5617-5622. LU Dianchen, HONG Baojian, TIAN Lixin. Explicit and exact solutions to the variable coefficient combined KdV equation with forced term[J]. Acta Phys Sin, 2006, 55(11):5617-5622. |
[7] | 套格图桑, 斯仁道尔吉. 变系数(3+1)维Zakharov-Kuznetsov方程的Jacobi椭圆函数精确解[J]. 量子电子学报, 2010, 27(1):6-14. Taogetusang, Sirendaoerji. Jacobi-like elliptuc function exact solutions of(3+1)-dimensional Zakharov-Kuznetsov equation with variable coefficients[J]. Chinese Journal of Quantum Electronics, 2010, 27(1):6-14. |
[8] | MOLATI M, KHALIQUE C M. Symmetry classification and invariant solutions of the variable coefficient BBM equation[J]. Appl Math Comput, 2013, 219(15):7917-7922. |
[9] | GAO Xinyi. Backlund transformation and shock-wave-type solutions for a generalized(3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics[J]. Ocean Engineering, 2015, 96:245-247. |
[10] | WAZWAZ A M, TRIKI H. Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients[J]. Commun Nonlinear Sci, 2011, 16(3):1122-1126. |
[11] | WANG Mingliang, LI Xiangzheng, ZHANG Jinliang. The(G'/G)expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys Lett A, 2008, 374(4):417-423. |
[12] | KUMAR V, GUPTA R K, JIWARI R. Painleve analysis, lie symmetries and exact solutions for variable coefficients Benjamin-Bona-Mahony-Burgers(BBMB)equation[J]. Commun Thero Phys, 2013, 60(8):175-182. |
[13] | 郭美玉, 刘希强, 高洁. 广义变系数KdV-Burgers 方程的微分不变量及群分类[J]. 量子电子学报, 2009, 26(2):139-147. GUO Meiyu, LIU Xiqiang, GAO Jie. Differential invariants and group classification of KdV-Burgers equation[J]. Chinese Journal of Quantum Electronics, 2009, 26(2):139-147. |
[14] | Taogetusang, Sirendaoerji. A method for constructing exact solutions of nonlinear evolution equation with variable coefficients[J]. Acta Phys Sin, 2009, 58(4):2121-2126. |
[15] | 孙玉真, 王振立, 王岗伟, 等. 广义变系数五阶KdV和BBM方程的孤立子解[J]. 量子电子学报, 2013, 30(4):398-404. SUN Yuzhen, WANG Zhengli, WANG Gangwei, et al. Soliton solutions for generalized fifth-order KdV and BBM equations with variable coefficients[J]. Chinese Journal of Quantum Electronics, 2013, 30(4):398-404. |
[16] | 雍雪林, 张鸿庆. 推广的投影Riccati方程法及其应用[J]. 物理学报, 2005, 54(6):2514-2519. YONG Xuelin, ZHANG Hongqin. Extended projective Riccati equations method and its application[J]. Acta Phys Sin, 2005, 54(6):2514-2519. |
[17] | WEISS J, TABOR M, CARNEVALE G. The painleve property for partial differential equation[J]. J Math Phys, 1983, 24(3):522-526. |
[18] | OLVER P J. Application of Lie group to differential equations[M]. Berlin: Springer-verlag, 1986. |
[19] | 洪宝剑, 卢殿臣, 赵康生. Burgers-BBM方程新的精确解[J]. 应用数学, 2007, 20(1):134-139. HONG Baojian, LU Dianchen, ZHAO Kangsheng. New exact solutions of Burgers-BBM equation[J]. Mathematica Applicata, 2007, 20(1):134-139. |
[20] | 刘式适, 付遵涛, 刘式达, 等. 求某些非线性偏微分方程特解的一个简洁方法[J]. 应用数学和力学, 2001, 22(3):281-286. LIU Shishi, FU Zuntao, LIU Shida, et al. A concise method for finding particular solutions of some nonlinear partial differential equations[J]. Appl Math Mech, 2001, 22(3):281-286. |
[21] | 祁新雷, 李金花.(1+1)维Burgers方程新的行波解[J]. 纯粹数学与应用数学, 2008, 24(4):709-712. QI Xinlei, LI Jinhua. The new travelling wave solutions of the(1+1)-dimensional Burgers equation[J]. Pure and Applied Mathematics, 2008, 24(4):709-712. |
[22] | 套格图桑, 斯仁道尔吉. BBM方程和修正的BBM方程新的精确孤立波解[J]. 物理学报, 2004, 53(12):4052-4060. Taogetusang, Sirendaoerji. New exact solitary wave solutions to the BBM and mBBM equations[J]. Acta Phys Sin, 2004, 53(12):4052-4060. |
[1] | 辛祥鹏,刘希强,张琳琳. (2+1)-维非线性发展方程的对称约化和精确解[J]. J4, 2010, 45(8): 71-75. |
|