《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 75-79.doi: 10.6040/j.issn.1671-9352.0.2017.633
陈昊君,郑莹,马明*,边莉娜,刘华
CHEN Hao-jun, ZHENG Ying, MA Ming*, BIAN Li-na, LIU Hua
摘要: 主要利用特征函数与协方差的关系,以及重积分的性质,得到了自激滤过的泊松过程的协方差的显示表达式。
中图分类号:
[1] 马明.自激滤过的泊松过程[J].吉林大学学报(理学版),2009,47(4):711-716. MA Ming. Self-exciting filtered Poisson process[J]. Journal of Jilin University(Science Edition), 2009, 47(4):711-716. [2] 邓永录.随机点过程及其应用[M].北京:科学出版社,1992. DENG Yonglu. Stochastic point process and its application[M]. Beijing: Science Press, 1992. [3] 郑莹,马明.自激滤过的泊松过程的二阶矩[J].山东大学学报(理学版),2013,48(9):35-39. ZHENG Ying, MA Ming. Second moment of self-exciting filter Possion process[J]. Journal of Shandong University(Natural Science), 2013, 48(9):35-39. [4] ALFRED O H. Parameter estimation for multi-dimensional filtered Poisson processes[R]. St Louis MO: Workshop to Honor Donald Snyder, 2000. [5] BOUZAS P R, VALDERRAMA M J, AGUILERA A M. A theoretical note on the distribution of a filtered compound doubly stochastic Poisson process[J]. Applied Mathematical Modelling, 2004, 28(8):769-773. [6] 杨戈峰,焦万堂.股票市场政策影响模型及其参数估计[J].吉首大学学报(自然科学版),2006,27(2):28-30. YANG Gefeng, JIAO Wantang. A model of effects of policy on stock market and its parameters estimation[J]. Journal of Jishou University(Natural Science Edition), 2006, 27(2):28-30. [7] LEFEBVRE M, GUILBAULT J L. Using filtered Poisson processes to model a river flow[J]. Applied Mathematical Modelling, 2008, 32(12):2792-2805. [8] 柯俊斌.指数-滤过Poisson过程模型结构可靠性设计[J].工程数学学报,2009,26(2):361-364. KE Junbin. Design of structural reliability for exponential-filtered Possion process model[J]. Chinese Journal of Engineering Mathematics, 2009, 26(2):361-364. [9] YUE Junyin, YUE Li, BULLEIT W M. Stochastic modeling of snow loads using a filtered Poisson process[J]. Journal of Cold Regions Engineering, 2011, 25(1):16-36. [10] KOMAEE A. Estimation of a low-intensity filtered Poisson process in additive white Gaussian noise[J]. IEEE Transactions on Automatic Control, 2012, 57(10):2518-2531. [11] HERRERA R. Energy risk management through self-exciting marked point process[J]. Energy Economics, 2013, 38(4):64-76. |
[1] | 马明,边莉娜,刘华. 基于事件点联合分布的自激滤过泊松过程的低阶矩[J]. 山东大学学报(理学版), 2018, 53(4): 55-58. |
[2] | 邓磊, 赵建立, 刘华, 李莹. k-值控制网络的可控性与可观性[J]. 山东大学学报(理学版), 2015, 50(04): 27-35. |
[3] | 郑莹,马明*. 自激滤过的泊松过程的二阶矩[J]. J4, 2013, 48(09): 35-39. |
[4] | 唐善刚. 广义容斥原理及其应用[J]. J4, 2009, 44(1): 83-90 . |
|