《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 48-52.doi: 10.6040/j.issn.1671-9352.0.2018.227
马霞,姚美萍
MA Xia, YAO Mei-ping
摘要: 考虑了具有扩散-反应的汉坦病毒传播模型。 利用Schauder不动点定理证明了模型行波解的存在性且给出了最小波速。 通过构造负单边拉普拉斯证明了行波解的不存在性。
中图分类号:
[1] 易静. 肾综合征出血热患者血浆病毒载量的检测及其与病程病情关系的研究[D]. 西安: 第四军医大学, 2012. YI jing. Study on the relationship between plasma viral load and disease course in patients with hemorrhagic fever with renal syndrome[D]. Xian: The Fourth Military Medical University, 2012. [2] ABRAMSON G, KENKRE V M. Spatio-temporal patterns in the hantavirus infection[J]. Physical Review E, 2002, 66:011912. [3] Ahmet Gökdogan, Mehmet Merdan, Ahmet Yildirim. A multistage differential transformation method for approximate solution of Hantavirus infection model[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1):1-8. [4] 姜黎, 姚美萍. 基于疫区控制措施的汉坦病毒传播模型[J]. 河南科学, 2017, 35(7):1017-1021. JIANG Li, YAO Meiping. Hantavirus transmission model based on epidemic area control measures[J]. Henan Science, 2017, 35(7):1017-1021. [5] ABRAMSON G, KENKRE V M. Traveling waves of infection in the hantavirus epidemics[J]. Bulletin of Mathematical Biology, 2003, 65(3):519-534. [6] BARBER E, CURRÒ C, VALENTI G. A hyperbolic reaction-diffusion model for the hantavirus infection[J]. Mathematical Methods in the Applied Sciences, 2008, 31(4):481-499. [7] ZHANG Tianran, WANG Wendi. Minimal wave speed for a class of non-cooperative diffusion-reaction system[J]. J Differential Equations, 2016, 260(3):2763-2791. [8] ZEIDLER E. Nonlinear functional analysis and its applications I[M]. New York: Springer, 1986. [9] PERKO L. Differential equations and dynamical systems[M]. New York: Springer, 2001. |
[1] | 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90-94. |
[2] | 吕海玲,刘希强,牛磊. 一类推广的[G′/G]展开方法及其在非线性数学物理方程中的应用[J]. J4, 2010, 45(4): 100-105. |
|