您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 96-98.doi: 10.6040/j.issn.1671-9352.0.2018.256

• • 上一篇    

Gauss-Weierstrass算子的逼近性质研究

王涛   

  1. 山东理工大学数学与统计学院, 山东 淄博 255049
  • 发布日期:2019-06-05
  • 作者简介:王涛(1976— ),男,硕士,讲师,研究方向为算子逼近. E-mail:ht_wangtao76@163.com

Study on the approximation properties of Gauss-Weierstrass operator

WANG Tao   

  1. School of Mathematics and Statistics, Shandong Unversity of Technology, Zibo 255049, Shandong, China
  • Published:2019-06-05

摘要: 利用分析方法和函数分解技巧对概率型算子中的Gauss-Weierstrass算子关于导数为有界函数类的点态渐进展开式及各种保持类性质进行了研究。

关键词: Gauss-Weierstrass算子, 准左右可导, 渐进展开

Abstract: We use analytic methods and function decomposition technique to study bounded functions for Gauss-Weierstrass operators in probability type operators, and obtain the pointwise asymptotic expansion and preserving properties for bounded functions.

Key words: Gauss-Weierstrass operator, quasi left and right derivable, asymptotic expansion

中图分类号: 

  • O174.41
[1] 陈文忠. 算子逼近论[M].厦门:厦门大学出版社,1989:13-79. CHEN Wenzhong. Theory of operators approximation[M]. Xiamen: Xiamen University Press, 1989: 13-79.
[2] 王涛. Post-Gamma算子列关于导数为局部有界函数的点态逼近估计[J].山东大学学报(理学版),2007,42(4):75-78. WANG Tao. Point-wise approximation of Post-Gamma operators for functions with locally bounded derivatives[J]. Journal of Shandong University(Natural Science), 2007, 42(4):75-78.
[3] BOJANIC, CHENG Fuhua. Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J]. Journal of Mathmatical Analysis and Application, 1989, 141:136-151.
[4] KHAN M K, PETERS M A. Lipschitz constants for some approximation operators of a lipschitz continuous function[J]. Journal of Approximation Theory, 1989, 59:307-315.
[5] RRASUL A Khan. Reverse martingales and approximation operators[J]. Journal of Approximation Theory, 1995, 80:367-377.
[6] ZVI Ziegler. Complete montonicity properties of certain approximation operators[J]. Journal of Approximation Theory, 1978, 23:287-295.
[1] 张艳艳,闫超. 基于第四类Chebyshev多项式零点的Lagrange插值多项式逼近[J]. 山东大学学报(理学版), 2017, 52(8): 10-16.
[2] 熊利艳,许贵桥. 基于Chebyshev节点组的多元张量积多项式插值在布朗片测度下的平均误差[J]. 山东大学学报(理学版), 2016, 51(10): 11-15.
[3] 翟学博, 胡修炎. 关于Levy平均的一个等价估计及应用[J]. 山东大学学报(理学版), 2015, 50(04): 24-26.
[4] 王 涛,耿红玲 . Lupas-Bezier型算子列对局部有界函数的点态逼近估计[J]. J4, 2007, 42(8): 83-85 .
[5] 周运明 . 广义LupasBaskakov算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2006, 41(1): 69-73 .
[6] 王 涛 . Post-Gamma算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2007, 42(4): 75-78 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!