您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 106-111.doi: 10.6040/j.issn.1671-9352.0.2018.257

• • 上一篇    

因子冯诺依曼代数上保持混合Lie三重ξ-积的非线性映射

周游1,张建华2*   

  1. 1.曲阜师范大学数学科学学院, 山东 曲阜 273165;2.陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 发布日期:2019-06-05
  • 作者简介:周游(1994— ), 女, 硕士研究生, 研究方向为算子代数. E-mail:yzhou201302@163.com*通信作者简介:张建华(1965— ),男, 博士, 教授, 博士生导师, 研究方向为算子代数. E-mail:jhzhang@snnu.edu.cn

Nonlinear maps preserving mixed Lie triple ξ-product on factor von Neumann algebras

ZHOU You1, ZHANG Jian-hua2*   

  1. 1. School of Mathematics Science, Qufu Normal University, Qufu 273165, Shandong, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Published:2019-06-05

摘要: 设M和N 是2个维数大于1的因子冯诺依曼代数,对于任意一个保持混合Lie三重ξ-积(ξ≠1)的双射Φ:M →N,均有如下形式: A→εΨ(A),其中ε∈{1,-1}, Ψ:M →N 。并且有,当ξ∈R时,Ψ是一个线性或共轭线性*-同构;当ξ∈C\R时,Ψ是一个线性*-同构。

关键词: 混合Lie三重ξ-积, 因子冯诺依曼代数, 保持

Abstract: In this paper, we prove that every bijective map preserving mixed Lie triple ξ-products with ξ≠1 from a factor von Neumann algebra M with dim M >1 into another factor von Neumann algebra N with dim N >1 is of the form A→εΨ(A), where ε∈{1,-1} and Ψ:M→N is a linear or conjugate linear *-isomorphism when ξ∈R and Ψ is a linear *-isomorphism when ξ∈C\R.

Key words: mixed Lie triple ξ-product, factor von Neumann algebras, preserver

中图分类号: 

  • O177.1
[1] BRESAR M, MIERS C R. Commutativity preserving mappings of von Neumann algebras[J]. Canadian Journal of Mathematics, 1993, 45(4):695-708.
[2] JANKO M. A note on Lie product preserving maps on Mn(R)[J]. Mathematica Slovaca, 2016, 66(3):715-720.
[3] YU Xiuping, LU Fangyan. Maps preserving Lie product on B(X)[J]. Taiwanese Journal Mathematics, 2008, 12(3):793-806.
[4] 张芳娟.素*-环上非线性保XY-ξYX* 积[J].数学学报(中文版),2014, 57(4):775-784. ZHANG Fangjuan. Nonlinear preserving product XY-ξYX on prime *-ring[J]. Acta Mathematica Sinica(Chinese Series), 2014, 57(4):775-784.
[5] ZHANG Jianhua, ZHANG Fangjuan. Nonlinear maps preserving Lie products on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2008, 429(1):18-30.
[6] BAI Zhaofang, DU Shuanping. Maps preserving products XY-YX* on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2012, 386(1):103-109.
[7] CUI Jianlian, CHOONKIL P. Maps preserving strong skew lie product on factor von Neumann algebras[J]. Acta Mathematica Scientia, 2012, 32(2):531-538.
[8] CUI Jianlian, LI Chi-Kwong. Maps preserving product XY-YX* on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2009, 431(5-7):833-842.
[9] QI Xiaofei, HOU Jinchuan. Strong skew commutativity preserving maps on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):362-370.
[10] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of the Korean Mathematical Society, 2015, 52(2):581-591.
[11] MIERS C R. Lie triple derivations of von Neumann algebras[J]. Proceedings of the American Mathematical Society, 1978, 71(1):57-61.
[12] HUO Donghua, ZHENG Baodong, LIU Hongyu. Nonlinear maps preserving Jordan triple η-*-products[J]. Journal of Mathematical Analysis Applications, 2015, 430(2):830-844.
[13] LI Changjing, LU Fangyan. Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras[J]. Complex Analysis Operator Theory, 2017, 11(1):109-117.
[14] LI Changjing, LU Fangyan, WANG Ting. Nonlinear maps preserving Jordan triple *-product on von Neumann algebras[J]. Annals of Functional Analysis, 2016, 7(3):496-507.
[1] 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49.
[2] 银俊成1,2,曹怀信1. Hilbert 空间L2(R)上的小波保持子[J]. J4, 2012, 47(4): 57-61.
[3] 海进科,李正兴. 有限群的中心自同构与类保持自同构[J]. J4, 2011, 46(6): 1-3.
[4] 蒋盛益1,王连喜2. 面向电信的客户流失预测模型研究[J]. J4, 2011, 46(5): 77-81.
[5] 方莉1,白维祖2. 保持幂等算子乘积或约当三乘积非零幂等性的映射[J]. J4, 2010, 45(12): 98-105.
[6] 海进科,李正兴,杜贵青. 关于有限群的类保持自同构的一个注记[J]. J4, 2010, 45(12): 28-30.
[7] 崔云丽 张建华. 因子von Neumann代数上的多项式零点保持线性映射[J]. J4, 2009, 44(10): 48-50.
[8] 吴校贵, 张建华. 全矩阵代数上保Jacobi恒等式的线性映射[J]. J4, 2009, 44(1): 49-52 .
[9] 潘振宽,魏伟波,张海涛 . 基于梯度和拉普拉斯算子的图像扩散变分模型[J]. J4, 2008, 43(11): 11-16 .
[10] 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30-32 .
[11] 张新 . 关于P网络空间的若干性质[J]. J4, 2006, 41(5): 77-79 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!