《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 106-111.doi: 10.6040/j.issn.1671-9352.0.2018.257
• • 上一篇
周游1,张建华2*
ZHOU You1, ZHANG Jian-hua2*
摘要: 设M和N 是2个维数大于1的因子冯诺依曼代数,对于任意一个保持混合Lie三重ξ-积(ξ≠1)的双射Φ:M →N,均有如下形式: A→εΨ(A),其中ε∈{1,-1}, Ψ:M →N 。并且有,当ξ∈R时,Ψ是一个线性或共轭线性*-同构;当ξ∈C\R时,Ψ是一个线性*-同构。
中图分类号:
[1] BRESAR M, MIERS C R. Commutativity preserving mappings of von Neumann algebras[J]. Canadian Journal of Mathematics, 1993, 45(4):695-708. [2] JANKO M. A note on Lie product preserving maps on Mn(R)[J]. Mathematica Slovaca, 2016, 66(3):715-720. [3] YU Xiuping, LU Fangyan. Maps preserving Lie product on B(X)[J]. Taiwanese Journal Mathematics, 2008, 12(3):793-806. [4] 张芳娟.素*-环上非线性保XY-ξYX* 积[J].数学学报(中文版),2014, 57(4):775-784. ZHANG Fangjuan. Nonlinear preserving product XY-ξYX on prime *-ring[J]. Acta Mathematica Sinica(Chinese Series), 2014, 57(4):775-784. [5] ZHANG Jianhua, ZHANG Fangjuan. Nonlinear maps preserving Lie products on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2008, 429(1):18-30. [6] BAI Zhaofang, DU Shuanping. Maps preserving products XY-YX* on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2012, 386(1):103-109. [7] CUI Jianlian, CHOONKIL P. Maps preserving strong skew lie product on factor von Neumann algebras[J]. Acta Mathematica Scientia, 2012, 32(2):531-538. [8] CUI Jianlian, LI Chi-Kwong. Maps preserving product XY-YX* on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2009, 431(5-7):833-842. [9] QI Xiaofei, HOU Jinchuan. Strong skew commutativity preserving maps on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):362-370. [10] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of the Korean Mathematical Society, 2015, 52(2):581-591. [11] MIERS C R. Lie triple derivations of von Neumann algebras[J]. Proceedings of the American Mathematical Society, 1978, 71(1):57-61. [12] HUO Donghua, ZHENG Baodong, LIU Hongyu. Nonlinear maps preserving Jordan triple η-*-products[J]. Journal of Mathematical Analysis Applications, 2015, 430(2):830-844. [13] LI Changjing, LU Fangyan. Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras[J]. Complex Analysis Operator Theory, 2017, 11(1):109-117. [14] LI Changjing, LU Fangyan, WANG Ting. Nonlinear maps preserving Jordan triple *-product on von Neumann algebras[J]. Annals of Functional Analysis, 2016, 7(3):496-507. |
[1] | 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49. |
[2] | 银俊成1,2,曹怀信1. Hilbert 空间L2(R)上的小波保持子[J]. J4, 2012, 47(4): 57-61. |
[3] | 海进科,李正兴. 有限群的中心自同构与类保持自同构[J]. J4, 2011, 46(6): 1-3. |
[4] | 蒋盛益1,王连喜2. 面向电信的客户流失预测模型研究[J]. J4, 2011, 46(5): 77-81. |
[5] | 方莉1,白维祖2. 保持幂等算子乘积或约当三乘积非零幂等性的映射[J]. J4, 2010, 45(12): 98-105. |
[6] | 海进科,李正兴,杜贵青. 关于有限群的类保持自同构的一个注记[J]. J4, 2010, 45(12): 28-30. |
[7] | 崔云丽 张建华. 因子von Neumann代数上的多项式零点保持线性映射[J]. J4, 2009, 44(10): 48-50. |
[8] | 吴校贵, 张建华. 全矩阵代数上保Jacobi恒等式的线性映射[J]. J4, 2009, 44(1): 49-52 . |
[9] | 潘振宽,魏伟波,张海涛 . 基于梯度和拉普拉斯算子的图像扩散变分模型[J]. J4, 2008, 43(11): 11-16 . |
[10] | 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30-32 . |
[11] | 张新 . 关于P网络空间的若干性质[J]. J4, 2006, 41(5): 77-79 . |
|