《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (8): 50-54.doi: 10.6040/j.issn.1671-9352.0.2018.334
孙奕欣,魏广生*
摘要: 考虑定义在[0,1]区间上AKNS算子的逆谱问题。证明了假设2组势函数在区间[a,1](a∈(0,1/2])上已知且它们的差属于Lp空间, 若2个系统的共同特征值的数量足够大则这2组势函数相等,且共同特征值的数量与系数p和a有关。
中图分类号:
[1] AMOUR L. Inverse spectral theory for the AKNS system with separated boundary conditions[J]. Inverse Problems, 1993, 9:507-523. [2] WATSON B A. Inverse spectral problems for weighted Dirac systems[J]. Inverse Problem, 1999, 15(3):793-80. [3] GASYMOV M G, LEVITAN B M. Determining the Dirac system from scattering phase[J]. Dokl Akad Nauk SSSR, 1996, 167:1219-1222. [4] LEVITAN B M, SARGSJAN I S. Sturm-Liouville and Dirac operators[M]. Berlin: Spriger, 1988. [5] PÖSCHEL J, TUBOWITZ E. Inverse spectral theory academic press[M]. New York: AMS, 1987. [6] DELRIO R, GRÉBERT B. Inverse spectral result for AKNS systems with partial information on the potentials[J]. Mathematical Physics, Analysis and Geometry, 2001, 4(3):229-244. [7] MIKLÓS H. On the inverse spectral theory of Schrödinger and Dirac operators[J]. Amer Math Soc Transl, 2001, 353:4155-4171. [8] AMOUR L, RAOUX T. Inverse spectral results for Schrödinger operators on the unit interval with potentials in Lp spaces[J]. Inverse Problems, 2007, 23:2367-2373. [9] LENIN, B Js. Distribution of zeros of entire functions[M]. New York: AMS, 1964. |
[1] | 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90. |
[2] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
[3] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[4] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
[5] | 田 霞,戴 华 . 接地弹簧—质点系统的逆特征值问题[J]. J4, 2008, 43(1): 98-102 . |
|