《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 122-126.doi: 10.6040/j.issn.1671-9352.0.2019.003
• • 上一篇
王燕荣1,陈云兰2
WANG Yan-rong1, CHEN Yun-lan2
摘要: 针对求解大型线性方程组提出了一种新的Jacobi迭代法。其思想是用Jacobi迭代法得到的当前点和上一步迭代点的组合得到下一步迭代点,并且通过求解最小二乘优化问题求得最佳组合因子。在与经典的Jacobi迭代法相同的条件下,证明了这种最优外插Jacobi迭代法的全局收敛性,进一步的数值实验也验证了新算法的有效性。
中图分类号:
[1] CHEN C T. Linear system theory and design[M]. 3rd ed. New York: Oxford University Press, 1999. [2] 薛正林, 吴开腾. 求拟反三对角线性方程组的一种数值方法[J]. 内江师范学院学报, 2016, 31(2):4-7. XUE Zhenglin, WU Kaiteng. A numerical method for solving the proposed anti-tridiagonal linear equations[J]. Journal of Neijiang Normal University, 2016, 31(2):4-7. [3] 周挺辉, 赵文恺, 严正, 等. 基于图形处理器的电力系统稀疏线性方程组求解方法[J]. 电力系统自动化, 2015, 39(2):74-80. ZHOU Tinghui, ZHAO Wenkai, YAN Zheng, et al. A method for solving sparse linear equations of power systems based on GPU[J]. Automation of Electric Power Systems, 2015, 39(2):74-80. [4] 韩波, 胡祥云, 黄一凡, 等. 基于并行化直接解法的频率域可控源电磁三维正演[J]. 地球物理学报, 2015, 58(8):2812-2826. HAN Bo, HU Xiangyun, HUANG Yifan, et al. 3-D frequency-domain CSEM modeling using aparallel direct solver[J]. Chinese Journal of Geophysics, 2015, 58(8):2812-2826. [5] BAI Z Z, BENZI M. Regularized HSS iteration methods for saddle-point linear systems[J]. BIT Numerical Mathematics, 2017, 57(2):287-311. doi:10.1007/s10543-016-0636-7. [6] BAI Zhongzhi. On SSOR-like preconditioners for non-Hermitian positive definite matrices[J]. Numerical Linear Algebra with Applications, 2016, 23(1):37-60. [7] WANG C L, YAN X H. On convergence of splitting iteration methods for non-Hermitian positive-definite linear systems[J]. International Journal of Computer Mathematics, 2013, 90(2):292-305. [8] 徐树方, 高立, 张平文. 数值线性代数[M]. 北京: 北京大学出版社, 2013. XU Shufang, GAO Li, ZHANG Pingwen. Numerical linear algebra[M]. Beijing: Beijing University Press, 2013. [9] MARGARIS A, SOURAVLAS S, ROUMELIOTIS M. Parallel implementations of the Jacobi linear algebraic systems solver[C] //Balkan Conference on Informatics. Sofia:[s.n.] , 2014: 161-172. [10] KARANTZA A, ALARCON S L, CAHILL N D. A comparison of sequential and GPU-accelerated implementations of B-spline signal processing operations for 2-D and 3-D images[C] //2012 3rd International Conference on Image Processing Theory, Tools and Applications(IPTA), October 15-18, 2012. Istanbul: IEEE, 2012. |
[1] | 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111. |
[2] | 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102. |
[3] | 刘晓光,畅大为*. 亏秩线性方程组PSD迭代法的最优参数[J]. J4, 2011, 46(12): 13-18. |
[4] | 陆峰. 解大型线性方程组的轮换重新开始Krylov子空间方法[J]. J4, 2010, 45(9): 65-69. |
[5] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
[6] | 谢仲洲 刘晓冀. 两组四元数线性矩阵方程组的解[J]. J4, 2008, 43(12): 40-47. |
[7] | 郑洲顺,黄光辉* . 求解病态线性方程组的共轭向量基算法[J]. J4, 2008, 43(10): 1-05 . |
|