您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 122-126.doi: 10.6040/j.issn.1671-9352.0.2019.003

• • 上一篇    

一种改进的求解大型线性方程组的Jacobi迭代法

王燕荣1,陈云兰2   

  1. 1.太原师范学院数学系, 山西 晋中 030619;2.天津大学数学学院, 天津 300072
  • 发布日期:2020-06-01
  • 作者简介:王燕荣(1979— ),女,硕士研究生,讲师,研究方向为数学课程论、最优化方法与算法. E-mail:wangyr0202@163.com
  • 基金资助:
    国家自然科学基金资助项目(61503276)

A modified Jacobi iterative method for large-size linear systems

WANG Yan-rong1, CHEN Yun-lan2   

  1. 1. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, China;
    2. School of Mathematics, Tianjin University, Taijin 300072, China
  • Published:2020-06-01

摘要: 针对求解大型线性方程组提出了一种新的Jacobi迭代法。其思想是用Jacobi迭代法得到的当前点和上一步迭代点的组合得到下一步迭代点,并且通过求解最小二乘优化问题求得最佳组合因子。在与经典的Jacobi迭代法相同的条件下,证明了这种最优外插Jacobi迭代法的全局收敛性,进一步的数值实验也验证了新算法的有效性。

关键词: 线性方程组, Jacobi迭代法, 最优组合因子

Abstract: An improved Jacobi method is proposed for solving large-size linear system. The improvement of the proposed method is to use the combination of the current point obtained by Jacobi method and the previous point to get the new point, to get the optimal factor of linear combination by solving the least square optimization. Under the same conditions as the classic Jacobi method, the global convergence of this method is proved, the computational results show the effectiveness of this method.

Key words: linear systems, Jacobi method, optimal factor of linear combination

中图分类号: 

  • O241.6
[1] CHEN C T. Linear system theory and design[M]. 3rd ed. New York: Oxford University Press, 1999.
[2] 薛正林, 吴开腾. 求拟反三对角线性方程组的一种数值方法[J]. 内江师范学院学报, 2016, 31(2):4-7. XUE Zhenglin, WU Kaiteng. A numerical method for solving the proposed anti-tridiagonal linear equations[J]. Journal of Neijiang Normal University, 2016, 31(2):4-7.
[3] 周挺辉, 赵文恺, 严正, 等. 基于图形处理器的电力系统稀疏线性方程组求解方法[J]. 电力系统自动化, 2015, 39(2):74-80. ZHOU Tinghui, ZHAO Wenkai, YAN Zheng, et al. A method for solving sparse linear equations of power systems based on GPU[J]. Automation of Electric Power Systems, 2015, 39(2):74-80.
[4] 韩波, 胡祥云, 黄一凡, 等. 基于并行化直接解法的频率域可控源电磁三维正演[J]. 地球物理学报, 2015, 58(8):2812-2826. HAN Bo, HU Xiangyun, HUANG Yifan, et al. 3-D frequency-domain CSEM modeling using aparallel direct solver[J]. Chinese Journal of Geophysics, 2015, 58(8):2812-2826.
[5] BAI Z Z, BENZI M. Regularized HSS iteration methods for saddle-point linear systems[J]. BIT Numerical Mathematics, 2017, 57(2):287-311. doi:10.1007/s10543-016-0636-7.
[6] BAI Zhongzhi. On SSOR-like preconditioners for non-Hermitian positive definite matrices[J]. Numerical Linear Algebra with Applications, 2016, 23(1):37-60.
[7] WANG C L, YAN X H. On convergence of splitting iteration methods for non-Hermitian positive-definite linear systems[J]. International Journal of Computer Mathematics, 2013, 90(2):292-305.
[8] 徐树方, 高立, 张平文. 数值线性代数[M]. 北京: 北京大学出版社, 2013. XU Shufang, GAO Li, ZHANG Pingwen. Numerical linear algebra[M]. Beijing: Beijing University Press, 2013.
[9] MARGARIS A, SOURAVLAS S, ROUMELIOTIS M. Parallel implementations of the Jacobi linear algebraic systems solver[C] //Balkan Conference on Informatics. Sofia:[s.n.] , 2014: 161-172.
[10] KARANTZA A, ALARCON S L, CAHILL N D. A comparison of sequential and GPU-accelerated implementations of B-spline signal processing operations for 2-D and 3-D images[C] //2012 3rd International Conference on Image Processing Theory, Tools and Applications(IPTA), October 15-18, 2012. Istanbul: IEEE, 2012.
[1] 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111.
[2] 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102.
[3] 刘晓光,畅大为*. 亏秩线性方程组PSD迭代法的最优参数[J]. J4, 2011, 46(12): 13-18.
[4] 陆峰. 解大型线性方程组的轮换重新开始Krylov子空间方法[J]. J4, 2010, 45(9): 65-69.
[5] 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 .
[6] 谢仲洲 刘晓冀. 两组四元数线性矩阵方程组的解[J]. J4, 2008, 43(12): 40-47.
[7] 郑洲顺,黄光辉* . 求解病态线性方程组的共轭向量基算法[J]. J4, 2008, 43(10): 1-05 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!