您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 9-15.doi: 10.6040/j.issn.1671-9352.0.2019.067

• • 上一篇    

Lupas算子对局部有界函数的点态逼近估计

王涛   

  1. 山东理工大学数学与统计学院, 山东 淄博 255049
  • 发布日期:2020-02-14
  • 作者简介:王涛(1976— ),男,硕士,讲师,研究方向为算子逼近. E-mail:ht_wangtao76@163.com

Pointwise approximation of Lupas operators to locally bounded functions

WANG Tao   

  1. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, Shandong, China
  • Published:2020-02-14

摘要: 利用概率方法并结合区间分割技术和Bojanic-Cheng方法研究了Lupas算子对局部有界函数的点态逼近估计,得到了Lupas算子的渐近估计。

关键词: Lupas算子, 局部有界函数, 中心极限定理

Abstract: In this paper the approximation properties of new type Lupas operators are studied to the locally bounded functions by means of probability methods and Bojanic-Cheng methods combining with analysis technique and interval division technique. The asymptotic estimate of Lupas operators is obtained.

Key words: Lupas operator, locally bounded function, central limited theorem

中图分类号: 

  • O174.41
[1] BOJANIC R, CHENG Fuhua. Rate of convergence of Bernstein polynomials for functions with derivatvies of bounded variation[J]. Journal of Mathematical Anlysis and Applications, 1989, 141(1):136-151.
[2] ZENG Xiaoming. On the rate of approximation of Bernstein type operators[J]. Journal of Approximation Theory, 2001, 109(2):242-256.
[3] ZENG Xiaoming, PIRIOU A. Rate of pointwise approximation for locally bounded functions by Szasz opeators[J]. Journal of Mathematical Anlysis and Applications, 2005, 307(2):433-443.
[4] LUPAS A. The approximation by some positive linear operators[C] // Proceedings of the International Dortmund Meeting on Approximation Theory. Belin: Akademie Verlag, 1995: 201-229.
[5] AGRATINI O. On the rate of convergence of a positive approximation process[J]. Nihonkai Mathmatic Journal, 2000, 11(1):47-56.
[6] GUO Shunsheng. On the rate of convergence of the integranted Meyer-Konig and Zeller operators for function of bounded vari-ation[J]. Journal of Approximation Theory, 1989, 56(3):245-255.
[7] CHEN Wenzhong, GUO Shunsheng. On the rate of convergence of the Gamma operators for functions of bounded variation[J]. Approximation Theory and its Application, 1985, 1(5):85-96.
[8] FELLER W. An introduction to probability theory and its application[M]. New York: Wiley, 1971: 540-542.
[1] 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57.
[2] 刘洋,冯志伟,陈平炎. 随机变量阵列的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(6): 24-29.
[3] 徐锋,吴群英. NA列自正则某些部分和乘积的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(2): 50-57.
[4] 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108.
[5] 王 涛,耿红玲 . Lupas-Bezier型算子列对局部有界函数的点态逼近估计[J]. J4, 2007, 42(8): 83-85 .
[6] 王 涛 . Post-Gamma算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2007, 42(4): 75-78 .
[7] 周运明 . 广义LupasBaskakov算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2006, 41(1): 69-73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!