《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 9-15.doi: 10.6040/j.issn.1671-9352.0.2019.067
• • 上一篇
王涛
WANG Tao
摘要: 利用概率方法并结合区间分割技术和Bojanic-Cheng方法研究了Lupas算子对局部有界函数的点态逼近估计,得到了Lupas算子的渐近估计。
中图分类号:
[1] BOJANIC R, CHENG Fuhua. Rate of convergence of Bernstein polynomials for functions with derivatvies of bounded variation[J]. Journal of Mathematical Anlysis and Applications, 1989, 141(1):136-151. [2] ZENG Xiaoming. On the rate of approximation of Bernstein type operators[J]. Journal of Approximation Theory, 2001, 109(2):242-256. [3] ZENG Xiaoming, PIRIOU A. Rate of pointwise approximation for locally bounded functions by Szasz opeators[J]. Journal of Mathematical Anlysis and Applications, 2005, 307(2):433-443. [4] LUPAS A. The approximation by some positive linear operators[C] // Proceedings of the International Dortmund Meeting on Approximation Theory. Belin: Akademie Verlag, 1995: 201-229. [5] AGRATINI O. On the rate of convergence of a positive approximation process[J]. Nihonkai Mathmatic Journal, 2000, 11(1):47-56. [6] GUO Shunsheng. On the rate of convergence of the integranted Meyer-Konig and Zeller operators for function of bounded vari-ation[J]. Journal of Approximation Theory, 1989, 56(3):245-255. [7] CHEN Wenzhong, GUO Shunsheng. On the rate of convergence of the Gamma operators for functions of bounded variation[J]. Approximation Theory and its Application, 1985, 1(5):85-96. [8] FELLER W. An introduction to probability theory and its application[M]. New York: Wiley, 1971: 540-542. |
[1] | 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57. |
[2] | 刘洋,冯志伟,陈平炎. 随机变量阵列的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(6): 24-29. |
[3] | 徐锋,吴群英. NA列自正则某些部分和乘积的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(2): 50-57. |
[4] | 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108. |
[5] | 王 涛,耿红玲 . Lupas-Bezier型算子列对局部有界函数的点态逼近估计[J]. J4, 2007, 42(8): 83-85 . |
[6] | 王 涛 . Post-Gamma算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2007, 42(4): 75-78 . |
[7] | 周运明 . 广义LupasBaskakov算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2006, 41(1): 69-73 . |
|