您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 65-74.doi: 10.6040/j.issn.1671-9352.0.2019.540

• • 上一篇    

B2型量子群的PBW形变及其对称性

任晓倩1,许勇军1,2*   

  1. 1. 曲阜师范大学数学科学学院, 山东 曲阜 273165;2. 山东大学数学学院, 山东 济南 250100
  • 发布日期:2020-07-14
  • 作者简介:任晓倩(1992— ), 女, 硕士研究生, 研究方向为代数学. E-mail: 2663096521@qq.com*通信作者简介: 许勇军(1984— ), 男, 博士, 副教授, 研究方向为代数学. E-mail: yjxu2002@163.com
  • 基金资助:
    国家自然科学基金资助项目(11871301);中国博士后科学基金资助项目(2016M600530);曲阜师范大学基金资助项目(BSQD20130142)

PBW-deformations of type B2 quantum group and their symmetry property

REN Xiao-qian1, XU Yong-jun1,2*   

  1. 1. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China;
    2.School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2020-07-14

摘要: 量子群的负部分是量子群理论中出现的一类重要的连通分次代数,其PBW形变简称为量子群的PBW形变。 除了A2情形,它们的定义关系式均是具有混合次数的齐次量子Serre关系式。 特别地, B2型量子群的负部分的定义关系式分别是次数为3和4的2个量子Serre关系式。 在连通分次代数的PBW形变理论的框架下, 本文明确刻画了B2型量子群的所有PBW形变并研究了它们的对称性, 即给出了B2型量子群的4类对合反自同构下的对称PBW形变。

关键词: 量子群, 连通分次代数, 对称PBW形变, 复杂度, 雅可比条件

Abstract: The negative parts of quantum groups are very important connected graded algebras appeared in the quantum group theory. Their PBW-deformations are called the PBW-deformations of quantum groups. Except the A2 case, the defining relations of these algebras are homogeneous quantum Serre relations with mixed degrees. In particular, the defining relations of the negative part of type B2 quantum group are respectively the homogeneous quantum Serre relations with degree 3 and 4. In this paper, in the framework of PBW-deformations of connected graded algebras, we explicitly characterize all the PBW-deformations of type B2 quantum group and investigate their symmetry property, i.e., all the symmetric PBW-deformations of type B2 quantum group under four kinds of involution anti-automorphisms are obtained.

Key words: quantum group, connected graded algebra, symmetric PBW-deformation, complexity, Jacobi conditions

中图分类号: 

  • O152.1
[1] BRAVERMAN A, GAITSGORY D. Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type[J]. Journal of Algebra, 1996, 181(2): 315-328.
[2] POLISHCHUK A, POSITSELSKI L. Quadratic algebras[M]. Rhode Island: AMS, 2005.
[3] BERGER R. Koszulity for nonquadratic algebras[J]. Journal of Algebra, 2001, 239(1): 705-734.
[4] FLØYSTAD G, VATNE J E. PBW-deformations of N-Koszul algebras[J]. Journal of Algebra, 2006, 302(1): 116-155.
[5] BERGER R, GINZBURG V. Higher symplectic reflection algebras and non-homogeneous N-Koszul property[J]. Journal of Algebra, 2006, 304(1): 577-601.
[6] CASSIDY T, SHELTON B. PBW-deformation theory and regular central extensions[J]. Journal für die Reine und Angewandte Mathematik, 2007, 610: 1-12.
[7] JANTZEN J C. Lectures on quantum groups[M]. Rhode Island: AMS, 1995.
[8] LETZTER G. Subalgebras which appear in quantum Iwasawa decompositions[J]. Canada Journal of Mathematics, 1997, 49(6): 1206-1223.
[9] LETZTER G. Symmetric pairs for quantized enveloping algebras[J]. Journal of Algebra, 1999, 220(2): 729-767.
[10] LETZTER G. Coideal subalgebras and quantum symmetric pairs[C] // New Directions in Hopf Algebras. Cambridge: Cambridge University Press, 2002: 117-166.
[11] LETZTER G. Quantum symmetric pairs and their zonal spherical functions[J]. Transformation Groups, 2003, 8(3): 261-292.
[12] KOLB S, PELLEGRINI J. Braided group actions on coideal subalgebras of quantized enveloping algebras[J]. Journal of Algebra, 2011, 336(1): 395-416.
[13] XU Yongjun, YANG Shilin. PBW-deformations of quantum groups[J]. Journal of Algebra, 2014, 408(1): 222-249.
[14] XU Yongjun, WANG Dingguo, CHEN Jialei. Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups[J]. Journal of Algebra and Its Applications, 2016, 15(10): 1650179.
[15] XU Yongjun, HUANG Hualin, WANG Dingguo. Realization of PBW-deformations of type An quantum groups via multiple Ore extensions[J]. Journal of Pure and Applied Algebra, 2019, 223(4): 1531-1547.
[16] 张鑫. 连通分次代数的对称PBW形变[D]. 曲阜: 曲阜师范大学, 2019. ZHANG Xin. Symmetric PBW-deformations of connected graded algebras[D]. Qufu: Qufu Normal University, 2019.
[1] 何钰星,阿布都卡的·吾甫. B2-型量子群的不可约模的Gröbner-Shirshov对[J]. 《山东大学学报(理学版)》, 2020, 55(8): 28-37.
[2] 刘龙飞,杨晓元. 一类新的周期为p3的GF(l)上广义割圆序列的线性复杂度[J]. 山东大学学报(理学版), 2017, 52(3): 24-31.
[3] 王国辉, 杜小妮, 万韫琦, 李芝霞. 周期为pq的平衡四元广义分圆序列的线性复杂度[J]. 山东大学学报(理学版), 2016, 51(9): 145-150.
[4] 毛家发,黄艳红,钮心忻,肖刚,朱李楠,盛伟国. 基于MPUI模型的空域图像水印容量研究[J]. 山东大学学报(理学版), 2016, 51(9): 68-75.
[5] 刘伍颖,易绵竹,张兴. 一种时空高效的多类别文本分类算法[J]. J4, 2013, 48(11): 99-104.
[6] 马云艳,栾贻会*. 基于局部LRS方法的稀疏信号片段检测[J]. J4, 2012, 47(12): 1-5.
[7] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94-101.
[8] 李德才1,2,朱美玲2,李立斌2*. A2型量子群正部分的有限维不可约表示[J]. J4, 2010, 45(12): 31-32.
[9] . 线性规划的宽邻域预估校正算法[J]. J4, 2009, 44(7): 66-70.
[10] 王锦玲 兰娟丽. GF(q)上一类新型的广义自缩序列[J]. J4, 2009, 44(10): 91-96.
[11] 王锦玲,刘宗成 . 主控生成器[J]. J4, 2008, 43(1): 81-87 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!