您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 59-64.doi: 10.6040/j.issn.1671-9352.0.2019.648

• • 上一篇    

相对于半对偶模的f-内射模

兰开阳,卢博*   

  1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030
  • 发布日期:2020-07-14
  • 作者简介:兰开阳(1995— ), 男, 硕士研究生, 研究方向为同调代数. E-mail:745365423@qq.com*通信作者简介:卢博(1985— ), 男, 博士, 副教授, 研究方向为同调代数. E-mail:lubo55@126.com
  • 基金资助:
    中央高校基本科研业务经费(31920190054);西北民族大学一流本科建设经费以及甘肃省重点学科经费

f-injective modules with respect to semidualizing modules

LAN Kai-yang, LU Bo*   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2020-07-14

摘要: 设R是一个交换环,C是半对偶R-模。定义并研究了相对于半对偶R-模C的f-内射模,证明了一个R-模同态F→M是M的一个内射(f-内射)预覆盖当且仅当HomR(C,F)→HomR(C,M)是C-内射(C-f-内射)预覆盖。

关键词: f-内射R-模, 半对偶R-模, 预覆盖

Abstract: Let R be a commutative ring and C a semidualizing R-module. The f-injective modules with respect to a semidualizing R-module C is defined and studied, and it is proved that a homomorphism F→M of R-modules is an injective(f-injective)precover of M if and only if HomR(C,F)→HomR(C,M) is a C-injective(C-f-injective)precover.

Key words: f-injective R-module, semidualizing R-module, precover

中图分类号: 

  • O154.2
[1] JONES M F. F-projectivity and flat epimorphisms[J]. Comm Algebra, 1981, 9:1603-1616.
[2] MAHER Z. On f-injective modules[J]. Arch Math, 2002, 78:345-349.
[3] HARTSHORNE R. Local cohomology, lecture notes in mathematics[M]. Berlin: Springer-Verlag, 1967.
[4] FOXBY H B. Gorenstein modules and related modules[J]. Math Scand, 1972, 31:267-284.
[5] VASCONCELOS W V. Divisor theory in module categories[M]. [S.l.] : North-Holland Math Studies, 1974.
[6] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. J Math Kyoto Univ, 2007, 47:781-808.
[7] MAO Lixin. Envelope, covers and semidualizing modules[J]. J Algebra Appl, 2019, 18:1-12.
[8] YAN Xiaoguang, ZHU Xiaosheng. Characterizations of some rings with C-projective, C-(FP-)injective and C-flat modules[J]. Czechoslovak Math J, 2011, 61:641-652.
[9] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. J Commut Algebra, 2010, 2:111-137.
[10] TAKAHASHI R, WHITE D. Homological aspects of semidualizing modules[J]. Math Scand, 2010, 106:5-22.
[11] LAM T Y. Lectures on modules and rings[M]. New York: Springer-Verlag, 1999.
[12] MAO Lixin. Finitely projective modules with respect to a semidualizing modules[J]. J Algebra Appl, 2019, 18:1-16.
[13] RAM N G. On f-injective modules and semi-hereditary rings[J]. Proc Nat Inst Sci(India Part A), 1969: 323-328.
[14] GENG Yuxian. F-projective and f-injective modules[J]. J Math Res Exp Feb, 2008, 28:74-80.
[15] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. New York: Walter de Gruyter, 2000.
[1] 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84.
[2] 饶炎平, 杨刚. Gorenstein弱平坦模[J]. 山东大学学报(理学版), 2015, 50(10): 68-75.
[3] 陈文静. 关于Gorenstein FP-内射复形[J]. 山东大学学报(理学版), 2014, 49(05): 81-85.
[4] 宋贤梅. 关于F-覆盖的存在性[J]. J4, 2012, 47(10): 4-6.
[5] 朱辉辉,周吉. Gorenstein内合冲模[J]. J4, 2011, 46(4): 64-67.
[6] 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31-34 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!