您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (12): 97-102.doi: 10.6040/j.issn.1671-9352.0.2020.194

• • 上一篇    

构造三角模型结构的新方法

张平儿,杨晓燕   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-12-01
  • 作者简介:张平儿(1993— ), 男, 硕士研究生, 研究方向为同调代数. E-mail:275661482@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11761060)

A new construction method of triangulated model structures

ZHANG Ping-er, YANG Xiao-yan   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-12-01

摘要: 设T 是三角范畴,ξ表示某个三角真类。假设(Q,R)和(Q,R)是两个相对于ξ的完备遗传余挠对,其中R⊆R且Q ∩R=Q∩R。在T 中构造了一个相对于ξ的唯一三角模型结构,Q(Q)作为余纤维(平凡的余纤维)对象的类,R(R)作为纤维(平凡的纤维)对象的类。

关键词: 三角范畴, 完备遗传余挠对, thick类, Hovey三元组

Abstract: Let T be a triangulated category and ξ denote some proper class of triangles, and suppose that we have two complete hereditary cotorsion pairs(Q,R)and(Q,R)with respect to ξ in T satisfying R⊆R and Q ∩R=Q∩R. We show how to construct an unique triangulated model structures with respect to ξ on T with Q(resp.Q)as the class of cofibrant(resp. trivially cofibrant)objects and R(resp. R)as the class of fibrant(resp. trivially fibrant)objects.

Key words: triangulated category, complete hereditary cotorsion pair, thick class, Hovey triple

中图分类号: 

  • O154.2
[1] YANG Xiaoyan. Model structures on triangulated categories[J]. Glasgow Math J, 2015, 57:263-284.
[2] BECKER H. Models for singularity categories[J]. Adv Math, 2014, 254:187-232.
[3] GILLESPIE J. Gorenstein complexes and recollements from cotorsion pairs[J]. Adv Math, 2016, 291:265-306.
[4] GILLESPIE J. Hereditary abelian model categories[J]. Bull London Math Soc, 2016, 48:895-922.
[5] VERDIER J L. Catégories dérivées[M] //Lecture Notes in Math, Vol. 569. Berlin: Springer-Verlag, 1977: 262-311.
[6] BELIGIANNIS A. Relative homological algebra and purity in triangulated categories[J]. J Algebra, 2000, 227(1):268-361.
[7] ASADOLLAHI J, SALARIAN S. Gorenstein objects in triangulated categories[J]. J Algebra, 2004, 281:264-286.
[1] 郑敏,陈清华. 三角范畴上t-结构的Ki-群[J]. 《山东大学学报(理学版)》, 2020, 55(8): 48-53.
[2] 杨婷,谢云丽. 高维刚性子范畴和t-结构[J]. 《山东大学学报(理学版)》, 2020, 55(12): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!