您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 1-6.doi: 10.6040/j.issn.1671-9352.0.2020.363

• •    

P-未知数据集及其过滤-分离

刘纪芹,潘正琨   

  1. 山东财经大学数学与数量经济学院, 山东 济南 250014
  • 发布日期:2021-01-21
  • 作者简介:刘纪芹(1968— ),女,博士,教授,研究方向为粗系统理论与应用. E-mail:sdfiljq@126.com

P-unknown data sets and their filtering-separation

LIU Ji-qin, PAN Zheng-kun   

  1. School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Published:2021-01-21

摘要: 当普通集合X的属性集合α发生动态变化时,X中隐藏着未知数据信息。根据这一情况,利用X生成的P-集合(X(-overF),XF)和∧-型大数据的结构,提出内P-未知数据集、外P-未知数据集、P-未知数据集概念,给出它们的数值特征。定义未知数据集的P-依赖度、P-过滤度概念,讨论未知数据集的P-依赖度与P-过滤度的关系。利用过滤度分析P-未知数据集过滤识别的条件,给出P-未知数据集的过滤-分离识别原理,过滤剩余-分离识别原理,得到过滤-分离识别定理以及过滤剩余-分离识别定理,最后给出内P-未知数据集过滤识别的应用。

关键词: P-集合, P-未知数据集, P-依赖度, P-过滤度, 过滤-分离

Abstract: When the attribute set α of the common set X changes dynamically, the unknown data information is hidden in X. According to the situation, the concepts of internal P-unknown data set, outer P-unknown data set and P-unknown data sets are proposed by using P-sets(X(-overF),XF)generated by X and the structure of ∧-type big data, and their numerical characteristics are given. The concepts of P-dependence degree and P-filtering degree of unknown data sets are defined, and the relationships between P-dependence degree and P-filtering degree are discussed. The conditions for filtering and identifying P-unknown data sets are analyzed by the filtering degree, and the filtering-separation and identification principle, the filtering surplus-separation and identification principle of P-unknown data sets are given, the filtering-separation and identification theorems and the filtering surplus-separation and identification theorems of P-unknown data sets are obtained. Finally, the application of filtering and identifying internal P-unknown data set is given.

Key words: P-set, P-unknown data set, P-dependence degree, P-filtering degree, filtering-separation

中图分类号: 

  • O144.5
[1] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84.
[2] SHI Kaiquan. P-sets and its applications[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219.
[3] 史开泉. P-集合与它的应用特性[J]. 计算机科学, 2010, 37(8):1-8. SHI Kaiquan. P-sets and its applied characteristics[J]. Computer Science, 2010, 37(8):1-8.
[4] 史开泉. 大数据结构-逻辑特征与大数据规律[J]. 山东大学学报(理学版), 2019, 54(2):1-29. SHI Kaiquan. Big data structure-logic characteristics and big data law[J]. Journal of Shandong University(Natural Science), 2019, 54(2):1-29.
[5] 刘纪芹, 史开泉. 大数据分解-融合及其智能获取[J]. 计算机科学, 2020, 47(6):66-73. LIU Jiqin, SHI Kaiquan. Big data decomposition-fusion and its intelligent acquisition[J]. Computer Science, 2020, 47(6):66-73.
[6] LIU Jiqin. P-Probabilities and its application[J]. An International Journal Advances in Systems Science and Applications, 2010, 10(2):200-208.
[7] 刘纪芹, 张海月. 信息的P-依赖与信息P-依赖挖掘-筛选[J]. 计算机科学, 2018, 45(7):202-206. LIU Jiqin, ZHANG Haiyue. Information P-dependence and P-dependence mining-sieving[J]. Computer Science, 2018, 45(7):202-206.
[8] TANG Jihua, ZHANG Ling, SHI Kaiquan, et al. Outer P-information law reasoning and its application in intelligent fusion and separating of information law[J]. Microsystem Technologies, 2018, 24(10):4389-4398.
[9] FAN Chengxian, LIN Hongkang. P-sets and the reasoning-identification of disaster information[J]. International Journal of Convergence Information Technology, 2012, 7(1):337-345.
[10] LIN Hongkang, FAN Chengxian. The dual form of P-reasoning and identification of unknown attribute[J]. International Journal of Digital Content Technology and its Applications, 2012, 6(1):121-131.
[11] ZHANG Ling, REN Xuefang. P-sets and (f,( -)/f )-heredity[J]. Quantitative Logic and Soft Computing, 2010, 2(1):735-743.
[12] QIU Yufeng, CHEN Baohui. f-model generated by P-sets[J]. Quantitative Logic and Soft Computing, 2010, 2(1):613-620.
[13] LI Yuying, ZHANG Li, SHI Kaiquan. Generation and recovery of compressed data and redundant data[J]. Quantitative Logic and Soft Computing, 2010, 2(1):661-671.
[14] LIU Jiqin, LI Zhiyi. Variation P-set and its structure[J]. Procedia Engineering, 2011, 15(3):1550-1554.
[15] 史开泉. P-信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(4):1-17. SHI Kaiquan. P-information law intelligent fusion and soft information image intelligent generation[J]. Journal of Shandong University(Natural Science), 2014, 49(4):1-17.
[16] 郝秀梅, 李宁宁. P-信息隐藏挖掘的数量特征及应用[J].山东大学学报(理学版), 2019, 54(9):9-15. HAO Xiumei, LI Ningning. The quantitative characteristics and applications of P-information hidden mining[J]. Journal of Shandong University(Naural Science), 2019, 54(9):9-14.
[17] 史开泉, 姚炳学. 函数S-粗集与规律辨识[J]. 中国科学E:信息科学, 2008, 38(4):553-564. SHI Kaiquan, YAO Bingxue. Function S-rough sets and law identification[J]. Science in China Series E: Information Sciences, 2008, 38(4):553-564.
[18] 史开泉, 赵建立. 函数S-粗集与隐藏规律安全-认证[J]. 中国科学E:信息科学, 2008, 38(8):1234-1243. SHI Kaiquan, ZHAO Jianli. Function S-rough sets and security-authentication of hiding law[J]. Science in China Series E: Information Sciences, 2008, 38(8):1234-1243.
[1] 徐凤生,于秀清,张立华. 信息智能融合与它的P-增广矩阵推理生成[J]. 《山东大学学报(理学版)》, 2019, 54(9): 22-28.
[2] 张凌,任雪芳. 非常态信息系统与逆P-增广矩阵关系[J]. 《山东大学学报(理学版)》, 2019, 54(9): 15-21.
[3] 陈保会,张凌,史开泉. P-信息智能动态融合与信息规律状态智能识别[J]. 山东大学学报(理学版), 2018, 53(2): 83-87.
[4] 徐凤生,于秀清,史开泉. 属性基数余-亏值定理与信息规律动态内-外分离[J]. 山东大学学报(理学版), 2017, 52(4): 87-92.
[5] 张秀全,李小朝. P-信息融合与它的P-矩阵推理智能生成[J]. 山东大学学报(理学版), 2017, 52(4): 93-99.
[6] 郭华龙,张凌. 数据分离与属性状态特征[J]. 山东大学学报(理学版), 2017, 52(12): 89-94.
[7] 郭华龙,任雪芳,张凌. 数据的动态挖掘与P-增广矩阵关系[J]. 山东大学学报(理学版), 2016, 51(8): 105-110.
[8] 张凌,任雪芳,史开泉. 信息规律智能变换-伪装与P-规律增广矩阵[J]. 山东大学学报(理学版), 2016, 51(8): 90-97.
[9] 汤积华,陈保会,史开泉. P-增广矩阵推理与信息的智能分解挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 61-66.
[10] 任雪芳,张凌. 逆P-集合的扰动定理与数据的扰动挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 54-60.
[11] 张景晓, 徐凤生. P-集合的属性函数与P-信息融合的属性合取特征及应用[J]. 山东大学学报(理学版), 2015, 50(10): 19-26.
[12] 史开泉. P-增广矩阵与信息的智能动态发现-辨识[J]. 山东大学学报(理学版), 2015, 50(10): 1-12.
[13] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10): 13-18.
[14] 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(08): 90-94.
[15] 卢盛荣, 汤积华. 伸-缩数据动态生成与数据淹没-隐藏[J]. 山东大学学报(理学版), 2015, 50(05): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!