《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (11): 97-104.doi: 10.6040/j.issn.1671-9352.0.2020.424
• • 上一篇
赵亚琪,任芳国*
ZHAO Ya-qi, REN Fang-guo*
摘要: 研究了矩阵酉相似概率分布表示的特性及矩阵熵凹性的应用。通过对分块矩阵、投影矩阵及矩阵熵的凹性进行研究,获得了任意方阵的酉相似概率分布的特性、任意密度矩阵关于一组完备正交投影矩阵变换的酉相似概率分布表示及矩阵熵的若干不等式。
中图分类号:
[1] MICHAEL A N, ISAAC L C. Quantum computation and quantum information[M]. New York: Cambridge University Press, 2010: 146-166. [2] ROGER A H, CHARIES R J.矩阵分析(英文版)[M].北京: 人民邮电出版社, 2015: 225-505. ROGER A H, CHARIES R J. Matrix analysis[M]. Beijing: Posts Telecom Press Co., LTD, 2015: 225-505. [3] ROGER A H, CHARIES R J. 矩阵分析中的若干论题[M]. 北京: 人民邮电出版社, 2011: 382-520. ROGER A H, CHARIES R J. Topics in matrix analysis[M]. Beijing: Posts Telecom Press Co., LTD, 2011: 382-520. [4] RAJENDRA B. Positive definite matrices[M]. New Jersey: Princeton University Press, 2009: 1-94. [5] SIMON M, CLAUDE K, CHRISTOPHER E, et al. Dimensionally sharp inequalities for the linear entropy[J]. Linear Algebra and Its Applications, 2020, 584(1):294-325. [6] ROMAIN D, OLIVIER P. On the minimization quantum entropies under local constraints[J]. Journal de Mathématiques Pures et Appliquées, 2019, 128(1):87-118. [7] HE Kan, YUAN Qing, HOU Jinchuan. Entropy-preserving maps on quantum states[J]. Linear Algebra and Its Applications, 2015, 467(15):243-253. [8] ERIC C, ELLIOTT H L. Remainder terms for some quantum entropy inequalities[J]. Journal of Mathematical Physics, 2014, 55(4):1-5. [9] LI Yuan, PAUL BUSCH. Von Neumann entropy and majorization[J]. Journal of Mathematical Analysis and Applications, 2013, 408(1): 384-393. [10] HE Kan, HOU Jinchuan, LI Ming. A von Neumann entropy condition of unitary equivalence of quantum states[J]. Applied Mathematics Letters, 2012, 25(8):1153-1156. |
[1] | 吕晓乐,陈峥立,牛梦斐. 关于Markov量子态的一些刻画[J]. 《山东大学学报(理学版)》, 2021, 56(2): 28-33. |
[2] | 杨光波,王才士,罗艳,王燕燕,南雪琪. 有限偶圈图上的 2-嵌入交错量子游荡[J]. 《山东大学学报(理学版)》, 2021, 56(1): 52-59. |
|