您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 1-9.doi: 10.6040/j.issn.1671-9352.0.2020.687

• •    

一类拟线性瞬态抛物方程组的空间二择性

李远飞,李丹丹,陈雪姣,石金诚   

  1. 广东财经大学华商学院数据科学学院, 广东 广州 511300
  • 发布日期:2021-06-03
  • 作者简介:李远飞(1982— ),男,博士,教授,研究方向为偏微分方程. E-mail:liqfd@163.com
  • 基金资助:
    广东省普通高校人文社科类创新团队项目(2020WCXTD008)

Alternative results of a class of quasilinear transient parabolic equations

LI Yuan-fei, LI Dan-dan, CHEN Xue-jiao, SHI Jin-cheng   

  1. School of Data Science, Huashang College Guangdong University of Finance &
    Economics, Guangzhou 511300, Guangdong, China
  • Published:2021-06-03

摘要: 考虑了在柱体的侧面上满足非线性动力条件的拟线性抛物系统解的空间Phragmén-Lindelöf型二择性。利用微分不等式技术,证明了解随空间变量或者指数式增长或者指数式衰减。通过设置一个大于0的任意常数,获得了更加精确的衰减率和增长率。最后,把二择一定理进一步推广到了二元混合物中的热量方程之中。

关键词: 抛物方程, Phragmén-Lindelö, f二择一, Young不等式, 非线性动力系统

Abstract: In this paper, the spatial Phragmén-Lindelöf type alternative of solutions for quasilinear parabolic systems satisfying nonlinear dynamic conditions on the side of the cylinder is considered. By using the technique of differential inequality, it is proved that the solution increases exponentially or decays exponentially with spatial variables. By setting an arbitrary positive constant, more accurate decay rate and growth rate are obtained. Finally, the alternative theorem is extended to the heat equation in binary mixtures.

Key words: parabolic equation, Phragmén-Lindelö, f alternative, Young inequality, nonlinear dynamic system

中图分类号: 

  • O175.26
[1] LIESS O. Necessary conditions in Phragmén-Lindelöf type estimates and decomposition of holomorphic functions[J]. Mathematische Nachrichten, 2017, 290(8/9):1328-1346.
[2] PAYNE L E, SCHAEFER P W. Some Phragmén-Lindelöf type results for the biharmonic equation[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1994, 45(3):414-432.
[3] MARKOWSKY G. The exit time of planar Brownian motion and the Phragmén-Lindelöf principle[J]. Journal of Mathematical Analysis & Applications, 2013, 422(1):638-645.
[4] GENTILI G, STOPPATO C, STRUPPA D C. A Phragmén-Lindelöf principle for slice regular functions[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2009, 18(4):749-759.
[5] LIU Yan, LIN Changhao. Phragmén-Lindelöf alternative type alternative results for the stokes flow equation[J]. Mathematical Inequalities & Applications, 2006, 9(4):671-694.
[6] 李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学,2020,41(4):406-419. LI Yuanfei. Phragmén-Lindelöf type results for non-standard Stokes flow equations around semi-infinite cylinder[J]. Applied Mathematics and Mechanics, 2020, 41(4):406-419.
[7] HORGAN C O, PAYNE L E. Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions[J]. Archive for Rational Mechanics and Analysis, 1993, 122(2):123-144.
[8] 李远飞,李志青.具有非线性边界条件的瞬态热传导方程的二择一结果[J].数学物理学报,2020,40A(5): 1248-1258. LI Yuanfei, LI Zhiqing. Phragmén-Lindelöf type Results for transient heat conduction equation with nonlinear boundary conditions[J]. Acta Mathematica Scientia, 2020, 40A(5):1248-1258.
[9] LESEDUARTE M C, QUINATANILLA R. Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions[J]. Journal of Applied Analysis and Computation, 2017, 7(4):1323-1335.
[10] 李远飞,肖胜中,郭连红,等.一类二阶拟线性瞬态方程组的Phragmén-Lindelöf型二择性结果[J].吉林大学学报(理学版),2020,58(5):1047-1054. LI Yuanfei, XIAO Shengzhong, GUO Lianhong, et al. Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations[J]. Journal of Jilin University(Science Edition), 2020, 58(5):1047-1054.
[11] 李远飞,陈雪姣,石金诚.二元混合物中的热传导方程Phragmén-Lindelöf二择性[J].山东大学学报(理学版),2020,55(12):1-12,24. LI Yuanfei, CHEN Xuejiao, SHI Jincheng. Phragmén-Lindelöf alternative for the heat conduction equations in a binary mixture[J]. Journal of Shandong University(Natual Science), 2020, 55(12):1-12,24.
[12] JAVIER J G, JAVIER S, GERHARD S. A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics[J]. The Journal of Geometric Analysis, 2019, 2019(5):1-26.
[13] TATEYAMA S. The Phragmén-Lindelöf theorem for Lp-viscosity solutions of fully nonlinear parabolic equations with unbounded ingredients[J]. Journal of Mathematical Pures and Applications, 2020, 133(2):172-184.
[14] HORGAN C O, PAYNE L E. Decay estimates for second order quasilinear partial differential equations[J]. Advance in Appl Math, 1984, 5(3):309-332.
[15] LIN Changhao. A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in R3[J]. Acta Mathematica Scientia, 1996, 16(2):181-191.
[16] CIALET P G. Mathematical elasticity [M]. Amsterdam: North-Holland Press, 1988.
[17] HORGAN C O, QUINATANILLA R. Spatial decay of transient end effects for nonstandard linear diffusion problems[J]. IMA Journal of Applied Mathematics, 2005, 70(1):119-128.
[1] 李远飞,陈雪姣,石金诚. 二元混合物中的热传导方程Phragmén-Lindelöf二择性[J]. 《山东大学学报(理学版)》, 2020, 55(12): 1-12.
[2] 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126.
[3] 王俊芳,赵培浩. 带有梯度超线性项抛物方程黏性解的比较原理[J]. 山东大学学报(理学版), 2018, 53(8): 77-83.
[4] 宋萌萌,尚海锋. 具测度初值的非线性抛物方程组的Cauchy问题[J]. 山东大学学报(理学版), 2016, 51(10): 41-47.
[5] 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127.
[6] 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41.
[7] 金承日,于战华,曲荣宁. 解中立型时滞抛物方程的隐式差分格式[J]. J4, 2011, 46(8): 13-16.
[8] 于永胜,宫召华,刘重阳. 微生物批式流加发酵中的最优控制[J]. J4, 2011, 46(11): 117-121.
[9] 冯青华 . 四阶抛物方程的一类交替分组方法[J]. J4, 2007, 42(8): 79-82 .
[10] 王婷 . 一般抛物方程的一类区域分解差分算法[J]. J4, 2006, 41(6): 51-56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!