您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (11): 21-25.doi: 10.6040/j.issn.1671-9352.0.2021.003

• • 上一篇    

图的双罗马控制数的界

谢智红,郝国亮*   

  1. 东华理工大学理学院, 江西 南昌 330013
  • 发布日期:2022-11-10
  • 作者简介:谢智红(1978— ),女,博士,副教授,研究方向为企业管理、运筹与优化. E-mail:xiezh168@ecut.edu.cn*通信作者简介:郝国亮(1980— ),男,博士,副教授,硕士生导师,研究方向为组合图论. E-mail:guoliang-hao@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061007,11861011)

Bounds on the double Roman domination number of graphs

XIE Zhi-hong, HAO Guo-liang*   

  1. College of Science, East China University of Technology, Nanchang 330013, Jiangxi, China
  • Published:2022-11-10

摘要: 定义在图G的顶点集V(G)上的函数f:V(G)→{0,1,2,3}称为G的双罗马控制函数,如果每个赋值为0的顶点至少与一个赋值为3或两个赋值为2的顶点相邻,并且每个赋值为1的顶点至少与一个赋值为2或3的顶点相邻。图的双罗马控制函数的权为所有顶点的赋值之和。双罗马控制函数的最小权称为双罗马控制数。利用顶点数、围长、周长以及最小度得到了含圈图的双罗马控制数的若干上下界。

Abstract: A function f:V(G)→{0,1,2,3}defined on the vertex set V(G)of a graph G is called a double Roman dominating function if any vertex assigned 0 is adjacent to at least one vertex assigned 3 or two vertices assigned 2, and any vertex assigned 1 is adjacent to at least one vertex assigned 2 or 3. The weight of a double Roman dominating function is the sum of assigned values of all vertices. The double Roman domination number of a graph G is defined as the minimum weight of a double Roman dominating function on G. Using the number of vertices, girth, circumference and minimum degree of graphs, some lower and upper bounds on the double Roman domination number of graphs with a cycle are established.

Key words: double Roman dominating function, double Roman domination number, girth, circumference

中图分类号: 

  • O157.5
[1] YUE Jun, SONG Jiamei. Note on the perfect Roman domination number of graphs[J]. Applied Mathematics and Computation, 2020, 364(1):124685.
[2] MA Yuede, CAI Qingqing, YAO Shunyu. Integer linear programming models for the weighted total domination problem[J].Applied Mathematics and Computation, 2019, 358:146-150.
[3] WU Pu, JIANG Huiqin, NAZARI-MOGHADDAM S, et al. Independent domination stable trees and unicyclic graphs[J].Mathematics, 2019, 7:820.
[4] HAYNES T W, HENNING M A, VOLKMANN L. Graphs with large Italian domination number[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(6):4273-4287.
[5] GHAREGHANI N, PETERIN I, SHARIFANI P. A note on bipartite graphs whose[1,k] -domination number equal to their number of vertices[J]. Opuscula Mathematica, 2020, 40:375-382.
[6] 朱晓颖,逄世友.控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2):30-36. ZHU Xiaoying, PANG Shiyou. On the maximal eccentric distance sum of tree with given domination number[J]. Journal of Shandong University(Natural Science), 2017, 52(2):30-36.
[7] AMJADI J, NAZARI-MOGHADDAM S, SHEIKHOLESLAMI S M, et al. An upper bound on the double Roman domination number[J]. Journal of Combinatorial Optimization, 2018, 36:81-89.
[8] ZHANG X, LI Z, JIANG H, et al. Double Roman domination in trees[J]. Information Processing Letters, 2018, 134:31-34.
[9] HENNING M A, JAFARI RAD N. A characterization of double Roman trees[J]. Discrete Applied Mathematics, 2019, 259:100-111.
[10] BEELER R A, HAYNES T W, HEDETNIEMI S T. Double Roman domination[J]. Discrete Applied Mathematics, 2016, 211:23-29.
[11] SHAO Zehui, SHEIKHOLESLAMI S M, NAZARI-MOGHADDAM S, et al. Global double Roman domination in graphs[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2019, 22:31-44.
[12] ABDOLLAHZADEH AHANGAR H, CHELLALI M, SHEIKHOLESLAMI S M. On the double Roman domination in graphs[J]. Discrete Applied Mathematics, 2017, 232:1-7.
[1] 解承玲, 马海成. 两个点并路的匹配等价图类[J]. 《山东大学学报(理学版)》, 2021, 56(1): 29-34.
[2] 李晶晶,边红,于海征. 亚苯基链的修正互惠度距离指标[J]. 《山东大学学报(理学版)》, 2020, 55(10): 71-76.
[3] 魏宗田,方慧,李银奎. 基于网络选址的设施系统可靠性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 77-82.
[4] 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30.
[5] 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47.
[6] 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40.
[7] 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22.
[8] 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34.
[9] 寇艳芳,陈祥恩,王治文. K1,3,p K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60.
[10] 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65.
[11] 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41.
[12] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[13] 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74.
[14] 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106.
[15] 王晔,孙磊. 不含3圈和4圈的1-平面图是5-可染的[J]. 山东大学学报(理学版), 2017, 52(4): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!