您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 76-80.doi: 10.6040/j.issn.1671-9352.0.2021.009

• • 上一篇    

δ-Jordan李超三系的构造和交换扩张

马丽丽,戴迪,李强   

  1. 齐齐哈尔大学理学院, 黑龙江 齐齐哈尔 161006
  • 发布日期:2021-08-09
  • 作者简介:马丽丽(1979— ), 女, 博士, 副教授, 研究方向为李代数. E-mail:limary@163.com
  • 基金资助:
    国家自然科学基金资助项目(11801211);黑龙江省青年科学基金资助项目(QC2016008);黑龙江省省属高等学校基本科研业务费科研项目(135509216)

Constitutions and Abelian extensions of δ-Jordan Lie supertriple systems

MA Li-li, DAI Di, LI Qiang   

  1. School of Science, Qiqihar University, Qiqihar 161006, Heilongjiang, China
  • Published:2021-08-09

摘要: 通过δ-Jordan李超三系的交换扩张得到3-上圈。运用表示和3-上圈构造δ-Jordan李超三系。证明了2个δ-Jordan李超三系的交换扩张等价当且仅当δ-Jordan李超三系的3-上圈属于相同的同调类。

关键词: δ-Jordan李超三系, 3-上圈, 交换扩张

Abstract: The 3-cocycle is given using the Abelian extension of δ-Jordan Lie supertriple systems. The δ-Jordan Lie supertriple system is constructed by the representation and a 3-cocycle. It is shown that two Abelian extensions of δ-Jordan Lie supertriple systems are equivalent if and only if 3-cocycles are in the same cohomology class.

Key words: δ-Jordan Lie supertriple system, 3-cocycle, Abelian extension

中图分类号: 

  • O152.5
[1] OKUBO S. Parastatistics as Lie supertriple systems[J]. J Math Phys, 1994, 35:2785-2803.
[2] OKUBO S, KAMIYA N. Quasi-classical Lie superalgebras and Lie supertriple systems[J]. Comm Algebra, 2002, 30(8):3825-3850.
[3] 马瑶, 陈良云, 刘东. 李超三系的广义导子[J]. 数学学报, 2013, 56(6):961-970. MA Yao, CHEN Liangyun, LIU Dong. On generalized derivations of Lie supertriple systems [J]. Acta Math Sin, 2013, 56(6):961-970.
[4] PENG Jianrong, CHEN Liangyun, SUN Bing. Centroids of Lie supertriple systems[J]. Adv Math Phys, 2015, ID: 949046.
[5] 郭双建. 李超三系的上同调和 Nijenhuis 算子[J]. 华东师范大学学报(自然科学版), 2020, 54(5):758-765. GUO Shuangjian. Cohomology and Nijenhuis operators of Lie supertriple systems[J]. Journal of East China Normal University(Natural Science), 2020, 54(5):758-765.
[6] KUBO F, TANIGUCHI Y. A controlling cohomology of the deformation theory of Lie triple systems[J]. J Algebra, 2004, 278(1):242-250.
[7] MA Lili, CHEN Liangyun. On δ-Jordan Lie triple systems[J]. Linear Multilinear Algebra, 2017, 65(4):731-751.
[8] MA Lili, CHEN Liangyun, ZHAO Jun. δ-Hom-Jordan Lie superalgebras[J]. Comm Algebra, 2018, 46(4):1668-1697.
[9] 马丽丽, 李强. Hom-Jordan李超代数的交换扩张[J].吉林大学学报(理学版), 2020, 58(4):803-807. MA Lili, LI Qiang. Abelian extensions of Hom-Jordan Lie superalgebras [J]. Journal of Jilin University(Science Edition), 2020, 58(4):803-807.
[10] 马丽丽, 李强. δ-李color代数的交换扩张[J]. 山东大学学报(理学版), 2020, 55(8):38-42. MA Lili, LI Qiang. Abelian extensions of δ-Lie color algebras [J]. Journal of Shandong University(Natural Science), 2020, 55(8):38-42.
[11] WANG Shengxiang, ZHANG Xiaohui, GUO Shuangjian. Derivations and deformations of δ-Jordan Lie supertriple systems[J]. Adv Math Phys, 2019, ID:3295462.
[12] ZHAO Jun, CHEN Liangyun, MA Lili. Representations and T*-extensions of hom-Jordan-Lie algebras[J]. Comm Algebra, 2016, 44(7):2786-2812.
[1] 马丽丽,李强. δ-李color代数的交换扩张[J]. 《山东大学学报(理学版)》, 2020, 55(8): 38-42.
[2] 李强,马丽丽,王晓燕,吕莉娇. Hom-Jordan李代数的交换扩张[J]. 《山东大学学报(理学版)》, 2018, 53(12): 4-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!