《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (11): 105-110.doi: 10.6040/j.issn.1671-9352.0.2021.156
• • 上一篇
蒋岩,吴凤,张量*
JIANG Yan, WU Feng, ZHANG Liang*
摘要: 双曲空间是截曲率为负常数的Riemann流形。特别地,截面曲率为-1的奇数维双曲空间H 2n+1上有经典的Kenmotsu结构。证明了H 2n+1在经典Kenmotsu结构基础之上不存在非平凡的φ-曲率为常数的Kenmotsu统计结构。
中图分类号:
[1] AMARI S. Differential-geometrical methods in statistics[M]. Berlin: Springer, 1985: 11-63. [2] MATSUZOE H. Statistical manifolds and affine differential geometry[J]. Advanced Studies in Pure Mathematics, 2010, 57:303-321. [3] SHIMA H, YAGI K. Geometry of Hessian manifolds[J]. Differential Geometry and its Applications, 1997, 7(3):277-290. [4] FURUHATA H, HASEGAWA I, OKUYAMA Y, et al. Sasakian statistical manifold[J]. Journal of Geometry and Physics, 2017, 117:179-186. [5] FURUHATA H. Sasakain statistical manifolds II[C] //NIELSEN F, BARBARESCO F. Geometric Science of Information. Paris: Springer, 2017: 179-185. [6] FURUHATA H, HASEGAWA I, OKUYAMA Y, et al. Kenmotsu statistical manifolds and warped product[J]. Journal of Geometry, 2017, 108(3):1175-1191. [7] FURUHATA H. Hypersurfaces in statistical manifolds[J]. Differential Geometry and its Applications, 2009, 27(3):420-429. [8] FURUHATA H, HASEGAWA I. Submanifolds theory in holomorphic statistical manifolds[C] //DRAGOMIR S, SHAHID M H, AL-SOLAMY F R. Geometry of Cauchy-Riemann Submanifolds. Singapore: Springer, 2016: 179-215. [9] KENMOTSU K. A class of almost contact Riemannian manifolds[J]. Tohoku Mathematical Journal, 1972, 24(1):93-103. [10] BLAIR D E. Riemannian geometry of contact and symplectic manifolds[M]. New York: Birkhäuser, 2010: 44-147. |
[1] | 吴凤,张量. 关于常φ -曲率Sasaki统计流形的一些结果[J]. 《山东大学学报(理学版)》, 2021, 56(4): 86-93. |
|