您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 86-93.doi: 10.6040/j.issn.1671-9352.0.2020.464

• • 上一篇    

关于常φ -曲率Sasaki统计流形的一些结果

吴凤,张量*   

  1. 安徽师范大学数学与统计学院, 安徽 芜湖 241000
  • 发布日期:2021-04-13
  • 作者简介:吴凤(1995— ),女,硕士研究生,研究方向为微分几何. E-mail:2251749932@qq.com*通信作者简介:张量(1979— ),男, 硕士,副教授,研究方向为微分几何. E-mail:zhliang43@163.com
  • 基金资助:
    安徽师范大学博士启动基金资助项目(751841)

Some results on Sasakian statistical manifolds of constant φ -curvature

WU Feng, ZHANG Liang*   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241000, Anhui, China
  • Published:2021-04-13

摘要: 研究了常φ -曲率的Sasaki统计流形和常曲率统计流形之间两种余维数为1的统计浸入,并证明这两种情况下的Sasaki统计流形的常φ -曲率都等于1。此外,还给出了几个Sasaki统计流形的例子。

关键词: Sasaki统计流形, 常φ, -曲率, 统计超曲面

Abstract: The statistical immersion of codimension one from a Sasakian statistical manifold of constant φ -curvature to a statistical manifold of constant curvature and its converse are studied in this paper. It can be proved that in both cases the constant φ -curvature of the Sasakian statistical manifold must be one. Besides, several examples of Sasakian statistical manifolds are constructed.

Key words: Sasakian statistical manifold, constant φ, -curvature, statistical hypersurface

中图分类号: 

  • O186.12
[1] AMARI S. Differential-geometrical methods in statistics[M]. Berlin: Springer, 1985: 11-63.
[2] MATSUZOE H. Statistical manifolds and affine differential geometry[J]. Advanced Studies in Pure Mathematics, 2010, 57:303-321.
[3] SHIMA H, YAGI K. Geometry of Hessian manifolds[J]. Differential Geometry and its Applications, 1997, 7(3):277-290.
[4] FURUHATA H, HASEGAWA I, OKUYAMA Y, et al. Sasakian statistical manifold[J]. Journal of Geometry and Physics, 2017, 117:179-186.
[5] FURUHATA H. Sasakian statistical manifolds Ⅱ[C] //Proceedings of the Third International Conference on Geometric Science of Information. Geometric Science of Information. Paris: Springer, 2017: 179-185.
[6] FURUHATA H, HASEGAWA I, OKUYAMA Y, et al. Kenmotsu statistical manifolds and warped product[J]. Journal of Geometry, 2017, 108(3):1175-1191.
[7] CHEN B Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension[J]. Glasgow Mathematical Journal, 1999, 41(1):33-41.
[8] AYDIN M E, MIHAI A, MIHAI I. Some inequalities on submanifolds in statistical manifolds of constant curvature[J]. Filomat, 2015, 29(3):465-477.
[9] AYDIN M E, MIHAI A, MIHAI I. Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature[J]. Bulletin of Mathematical Sciences, 2017, 7(1):155-166.
[10] BANSAL P, UDDIN S, SHAHID M H. On the normal scalar curvature conjecture in Kenmotsu statistical manifolds[J]. Journal of Geometry and Physics, 2019, 142:37-46.
[11] CHEN B Y, MIHAI A, MIHAI I. A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature[J]. Results in Mathematics, 2019, 74(4):165.
[12] MILIJEVIC M. Totally real statistical submanifolds[J]. Interdisciplinary Information Sciences, 2015, 21(2):87-96.
[13] KASSABOV O. On totally real submanifolds[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 1986, 38(2):136-143.
[14] FURUHATA H. Hypersurfaces in statistical manifolds[J]. Differential Geometry and its Applications, 2009, 27(3):420-429.
[15] MIN C R, CHOE S O, AN Y H. Statistical immersions between statistical manifolds of constant curvature[J]. Global Journal of Advanced Research on Classical and Modern Geometries, 2014, 3(2):66-75.
[16] SIDDIQUI A N, SHAHID M H. On totally real statistical submanifolds[J]. Filomat, 2018, 32(13):4473-4483.
[17] VOS P W. Fundamental equations for statistical submanifolds with applications to the Bartlett correction[J]. Annals of the Institute of Statistical Mathematics, 1989, 41(3):429-450.
[18] BLAIR D E. Riemannian geometry of contact and symplectic manifolds[M]. New York: Birkhäuser, 2010: 1-106.
[19] VICKERS J A. Distributional geometry in general relativity[J]. Journal of Geometry and Physics, 2012, 62(3):692-705.
[20] CHENG S Y, YAU S T. Hypersurfaces with constant scalar curvature[J]. Mathematische Annalen, 1977, 225:195-204.
[1] 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63.
[2] 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96.
[3] 何超,李影,宋卫东. 局部对称伪黎曼流形中的2-调和类时子流形[J]. 山东大学学报(理学版), 2016, 51(10): 54-58.
[4] 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!