《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 86-93.doi: 10.6040/j.issn.1671-9352.0.2020.464
• • 上一篇
吴凤,张量*
WU Feng, ZHANG Liang*
摘要: 研究了常φ -曲率的Sasaki统计流形和常曲率统计流形之间两种余维数为1的统计浸入,并证明这两种情况下的Sasaki统计流形的常φ -曲率都等于1。此外,还给出了几个Sasaki统计流形的例子。
中图分类号:
[1] AMARI S. Differential-geometrical methods in statistics[M]. Berlin: Springer, 1985: 11-63. [2] MATSUZOE H. Statistical manifolds and affine differential geometry[J]. Advanced Studies in Pure Mathematics, 2010, 57:303-321. [3] SHIMA H, YAGI K. Geometry of Hessian manifolds[J]. Differential Geometry and its Applications, 1997, 7(3):277-290. [4] FURUHATA H, HASEGAWA I, OKUYAMA Y, et al. Sasakian statistical manifold[J]. Journal of Geometry and Physics, 2017, 117:179-186. [5] FURUHATA H. Sasakian statistical manifolds Ⅱ[C] //Proceedings of the Third International Conference on Geometric Science of Information. Geometric Science of Information. Paris: Springer, 2017: 179-185. [6] FURUHATA H, HASEGAWA I, OKUYAMA Y, et al. Kenmotsu statistical manifolds and warped product[J]. Journal of Geometry, 2017, 108(3):1175-1191. [7] CHEN B Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension[J]. Glasgow Mathematical Journal, 1999, 41(1):33-41. [8] AYDIN M E, MIHAI A, MIHAI I. Some inequalities on submanifolds in statistical manifolds of constant curvature[J]. Filomat, 2015, 29(3):465-477. [9] AYDIN M E, MIHAI A, MIHAI I. Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature[J]. Bulletin of Mathematical Sciences, 2017, 7(1):155-166. [10] BANSAL P, UDDIN S, SHAHID M H. On the normal scalar curvature conjecture in Kenmotsu statistical manifolds[J]. Journal of Geometry and Physics, 2019, 142:37-46. [11] CHEN B Y, MIHAI A, MIHAI I. A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature[J]. Results in Mathematics, 2019, 74(4):165. [12] MILIJEVIC M. Totally real statistical submanifolds[J]. Interdisciplinary Information Sciences, 2015, 21(2):87-96. [13] KASSABOV O. On totally real submanifolds[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 1986, 38(2):136-143. [14] FURUHATA H. Hypersurfaces in statistical manifolds[J]. Differential Geometry and its Applications, 2009, 27(3):420-429. [15] MIN C R, CHOE S O, AN Y H. Statistical immersions between statistical manifolds of constant curvature[J]. Global Journal of Advanced Research on Classical and Modern Geometries, 2014, 3(2):66-75. [16] SIDDIQUI A N, SHAHID M H. On totally real statistical submanifolds[J]. Filomat, 2018, 32(13):4473-4483. [17] VOS P W. Fundamental equations for statistical submanifolds with applications to the Bartlett correction[J]. Annals of the Institute of Statistical Mathematics, 1989, 41(3):429-450. [18] BLAIR D E. Riemannian geometry of contact and symplectic manifolds[M]. New York: Birkhäuser, 2010: 1-106. [19] VICKERS J A. Distributional geometry in general relativity[J]. Journal of Geometry and Physics, 2012, 62(3):692-705. [20] CHENG S Y, YAU S T. Hypersurfaces with constant scalar curvature[J]. Mathematische Annalen, 1977, 225:195-204. |
[1] | 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63. |
[2] | 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96. |
[3] | 何超,李影,宋卫东. 局部对称伪黎曼流形中的2-调和类时子流形[J]. 山东大学学报(理学版), 2016, 51(10): 54-58. |
[4] | 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67. |
|