《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 45-48.doi: 10.6040/j.issn.1671-9352.0.2021.157
• • 上一篇
魏孟君,李刚*
WEI Meng-jun, LI Gang*
摘要: 定义了双半环的分配格和带双半环。利用这两个定义以及左Clifford半群的性质,给出了左双环和左Clifford双半环的定义,并得到了双半环是左双环的充分必要条件和双半环是左Clifford双半环的充分必要条件。
中图分类号:
[1] 左孝陵,李为鉴,刘永才. 离散数学[M]. 上海:上海科技出版社, 1982. ZUO Xiaoling, LI Weijian, LIU Yongcai. Discrete mathematics[M]. Shanghai: Shanghai Science & Technical Publishers, 1982. [2] 张伟. 双半环的结构和同余[D]. 南昌:江西师范大学, 2007. ZHANG Wei. The structure and congruence of bi-semirings[D]. Nanchang: Jiangxi Normal University, 2007. [3] BANDELT H J, PETRICH M. Subdirect product of rings and distributive lattices[J]. Proc Edinburgh Math, 1982, 25:155-171. [4] SEN M K, GUO Yuqi, SHUM K P. A class of idempotent semirings[J]. Semigroup Forum, 2000, 60:351-367. [5] GOLAN J S. The theory of semirings with application in mathematics and theoretical computer science[M]. New York: Pitman Monographs and Surveys in Pure Applied Mathematics, Longman, 1992. [6] ZHU Pinyu, GUO Yuqi, CEN Jiaping. Structure and characteristics of left Clifford semigroups[J]. Science in China, Ser. A, 1992, 35(7):791-805. [7] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: A Wiley-Interscience Publication, 1999. |
|