您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (5): 76-83.doi: 10.6040/j.issn.1671-9352.0.2021.407

• • 上一篇    

基于不确定理论的多部件竞争失效系统的可靠性评估

温艳清1,刘宝亮1*,师海燕1,陈剑慧2,丰月姣1   

  1. 1.山西大同大学数学与统计学院, 山西 大同 037009;2.中国兵器工业标准化研究所, 北京 100089
  • 发布日期:2023-05-15
  • 作者简介:温艳清(1980— ),女,博士,副教授,研究方向为可靠性理论及其应用. E-mail:oryqwen@163.com*通信作者简介:刘宝亮(1982— ),男,博士,教授,研究方向为可靠性理论及其应用. E-mail:baoliang521@163.com
  • 基金资助:
    国家自然科学基金资助项目(71601101);山西省高等学校科技创新项目(2020L0463,2022L415);山西省基础研究计划资助项目(20210302124310)

Reliability evaluation for multi-component competing failure system based on uncertainty theory

WEN Yanqing1, LIU Baoliang1*, SHI Haiyan1, CHEN Jianhui2, FENG Yuejiao1   

  1. 1. College of Mathematics and Statistics Science, Shanxi Datong University, Shanxi 037009, Datong, China;
    2. China North Standardization Center, Beijing 100089, China
  • Published:2023-05-15

摘要: 为了分析没有或仅有少量的历史故障数据的多部件竞争失效系统可靠性,同时考虑外界冲击对内部退化过程的影响,基于不确定理论分别建立串联竞争失效和并联竞争失效可靠性模型,并推导出相应的确信可靠度计算公式。通过一个微电子机械系统验证了模型的正确性和有效性。结果表明,外部冲击过程与内部磨损退化过程独立情形下的系统可靠度明显高于相依情形下的系统可靠度。

关键词: 竞争失效过程, 确信可靠度, 不确定理论, 冲击模型

Abstract: To analysis the reliability of multi-component competing failure system with little or no historical failure data, and determine the effects of external shocks on the internal wear degradation, the reliability models of series-competing failure and parallel-competing failure are developed based on uncertainty theory. Meanwhile, the belief reliability of the series-competing failure degradation system and the parallel-competing failure degradation systems are also derived. A micro-electro-mechanical systema(MEMS)are used to verify the correctness and validity of the proposed model. The results show that the system reliability is higher when the external shocks are independent of the internal wear degradation than when the external shocks dependent on internal wear degradation.

Key words: competing failure process, belief reliability, uncertainty theory, shock model

中图分类号: 

  • O213
[1] RAFIEE K, FENG Q M, COIT D W. Condition-based maintenance for repairable deteriorating systems subject to a generalized mixed shock model[J]. IEEE Transactions on Reliability, 2015, 64(4):1164-1174.
[2] HUANG Xianzhen, JIN Sujun, HE Xuefeng, et al. Reliability analysis of coherent systems subject to internal failures and external shocks[J]. Reliability Engineering & System Safety, 2019, 181:75-83.
[3] CUI L R, HUANG J B, LI Y. Degradation models with Wiener diffusion processes under calibrations[J]. IEEE Transactions on Reliability, 2016, 65(2):613-623.
[4] HAO S H, YANG J, MA X B, et al. Reliability modeling for mutually dependent competing failure processes due to degradation and random shocks[J]. Applied Mathematical Modelling, 2017, 51:232-249.
[5] QIU Q A, CUI L R. Reliability evaluation based on a dependent two-stage failure process with competing failures[J]. Applied Mathematical Modelling, 2018, 64:699-712.
[6] SONG S L, COIT D W, FENG Q M, et al. Reliability analysis for multi-component systems subject to multiple dependent competing failure processes[J]. IEEE Transactions on Reliability, 2014, 63(1):331-345.
[7] LIU B. Why is there a need for uncertainty theory[J]. Journal of Uncertain Systems, 2012, 6(1):3-10.
[8] LIU B D. Uncertainty theory[M]. 2nd ed. Berlin: Springer-Verlag, 2007.
[9] LIU B D. Uncertainty theory: a branch of mathematics for modeling human uncertainty[M]. Berlin: Springer, 2010.
[10] YANG X F, ZHANG Z Q, GAO X. Asian-barrier option pricing formulas of uncertain financial market[J]. Chaos, Solitons and Fractals, 2019, 123:79-86.
[11] ZHANG Z Q, LIU W Q, DING J H. Valuation of stock loan under uncertain environment[J]. Soft Computing, 2018, 22(17):5663-5669.
[12] SHENG Y H, GAO R, ZHANG Z Q. Uncertain population model with age-structure[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(2):853-858.
[13] ZHANG Z Q, YANG X F. Uncertain population model[J]. Soft Computing, 2020, 24(4):2417-2423.
[14] YAO K, ZHOU J. Ruin time of uncertain insurance risk process[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1):19-28.
[15] LIU B D. Extreme value theorems of uncertain process with application to insurance risk model[J]. Soft Computing, 2013, 17(4):549-556.
[16] LI X Y, WU J P, LIU L, et al. Modeling accelerated degradation data based on the uncertain process[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(8):1532-1542.
[17] LIU B L, ZHANG Z Q, WEN Y Q. Reliability analysis for devices subject to competing failure processes based on chance theory[J]. Applied Mathematical Modelling, 2019, 75:398-413.
[18] LIU B L, ZHANG Z Q, WEN Y Q, et al. Reliability analysis for complex systems subject to competing failure processes in an uncertain environment[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(3):4331-4339.
[19] 刘宝亮, 张志强, 温艳清, 等. 具有变点的不确定竞争失效退化系统的可靠性建模[J]. 北京航空航天大学学报, 2020, 46(11):2039-2044. LIU Baoliang, ZHANG Zhiqiang, WEN Yanqing, et al. Reliability modeling of uncertain competing failure degradation system with a change point[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11):2039-2044.
[20] LIU Z C, HU L M, LIU S J, et al. Reliability analysis of warm standby system with the different repair time of work failure and standby failure and priority[J]. Mathematics in Practice and Theory, 2011, 41(22):174-181.
[21] LIU Z C, HU L M, LIU S J, et al. Reliability analysis of general systems with bi-uncertain variables[J]. Soft Computing, 2020, 24(9):6975-6986.
[22] SHI H Y, WEI C, ZHANG Z Q, et al. Reliability analysis of dependent competitive failure model with uncertain parameters[J]. Soft Computing, 2022, 26(1):33-43.
[23] 师海燕, 魏淳, 张志强, 等. 双不确定相依竞争失效模型的可靠性评估[J]. 控制与决策, 2022, 37(3):685-689. SHI Haiyan, WEI Chun, ZHANG Zhiqiang, et al. Reliability evaluation of dependent competitive failure models with biuncertainty[J]. Control and Decision, 2022, 37(3):685-689.
[24] 师海燕, 魏淳, 温艳清, 等. 不确定理论下竞争失效系统的可靠性分析[J]. 北京航空航天大学学报, 2021, 47(1):84-89. SHI Haiyan, WEI Chun, WEN Yanqing, et al. Reliability analysis for systems subject to competing failure processes based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1):84-89.
[25] ZHANG S J, KANG R, LIN Y H. Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process[J]. Reliability Engineering and System Safety, 2021, 208:107440.
[26] WU J P, KANG R, LI X Y. Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension[J]. Reliability Engineering and System Safety, 2020, 201:106967.
[27] 张婷婷, 胡林敏, 王桂荣. 离散时间随机不确定多状态系统可靠性分析[J]. 系统科学与数学, 2021, 41(7):2006-2017. ZHANG Tingting, HU Linmin, WANG Guirong. Reliability analysis of a discrete time random uncertain multi-state system[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(7):2006-2017.
[28] 胡林敏, 黄威, 王国芳, 等. 不确定并串联系统的贮备冗余优化[J]. 系统科学与数学, 2018, 38(5):591-604. HU Linmin, HUANG Wei, WANG Guofang, et al. Standby redundancy optimization of uncertain parallel-series system[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(5):591-604.
[29] 康锐,文美林,张清源,等. 确信可靠性理论与方法[M]. 北京:国防工业出版社,2020. KANG Rui, WEN Meilin, ZHANG Qingyuan, et al. Belief reliability theory and methodology[M]. Beijing: National Defense Industry Press, 2020.
[30] HSU W T. Recent progress in silicon MEMS oscillators[C] //Proceedings of the 40th Annual Precise Time and Time Interval(PTTI)Systems and Applications Meeting, Reston: [s.n.] , 2008: 135-145.
[1] 姜伟欣,马明,刘华. 有重点伯努利冲击到达的开型截断δ冲击模型的寿命行为[J]. 《山东大学学报(理学版)》, 2022, 57(1): 95-100.
[2] 冶建华,郑莹,刘华. 截断δ冲击模型标值过程的协方差[J]. 《山东大学学报(理学版)》, 2019, 54(7): 113-116.
[3] 冶建华, 马明. 一般离散开型截断δ冲击模型的寿命分布[J]. 山东大学学报(理学版), 2015, 50(04): 8-13.
[4] 郑莹,马明*. 自激滤过的泊松过程的二阶矩[J]. J4, 2013, 48(09): 35-39.
[5] 李玲1,成国庆1,唐应辉2. 带预防性维修的冲击模型最优检测更换策略[J]. J4, 2011, 46(9): 122-126.
[6] 马明. δ冲击模型寿命分布的积分计算及M函数的性质[J]. J4, 2008, 43(12): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!