《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 28-33.doi: 10.6040/j.issn.1671-9352.0.2021.727
尹俊琦,杨刚
YIN Jun-qi, YANG Gang
摘要: 引入了Gorenstein DG-内射复形的定义并研究了其性质。同时证明了复形G是Gorenstein DG-内射复形当且仅当对任意n∈Z, Gn是Gorenstein 内射模且对任意DG-内射复形E,有HomR(E,G)是正合复形。
中图分类号:
[1] ENOCHS E E, JENDA O M G, XU J. Orthogonality in the category of complexes[J]. Mathematical Journal of Okayama University, 1996, 38(1):25-46. [2] ENOCHS E E, GARCÍROZAS J R. Gorenstein injective and projective complexes[J]. Communications in Algebra, 1998, 26(5):1657-1674. [3] ROZAS J R G. Covers and envelopes in the category of complexes of modules[M] //Volume of Chapman and Hall/CRC Research Notes in Mathematics. Boca Raton: Chapman and Hall/CRC, 1999. [4] YANG X, LIU Z. Gorenstein projective, injective, and flat complexes[J]. Communications in Algebra, 2011, 39(5):1705-1721. [5] LU B, LAN K. A note on DG-Gorenstein injective complexes[J]. Algebra Colloquium, 2020, 27(4):731-740. [6] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/2/3):167-193. [7] YANG X, LIU Z. DG-projective, injective and flat complexes[J]. Algebra Colloquium, 2013, 20(1):155-162. [8] GILLESPIE J. The flat model structure on CH(R)[J]. Transactions of the American Mathematical Society, 2004, 356(8):3369-3390. |
[1] | 刘一甫,卢博. 关于DG-Ding内射复形的一个注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 25-31. |
[2] | 陈文静. 关于Gorenstein FP-内射复形[J]. 山东大学学报(理学版), 2014, 49(05): 81-85. |
|