您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 25-31.doi: 10.6040/j.issn.1671-9352.0.2020.685

• • 上一篇    

关于DG-Ding内射复形的一个注记

刘一甫,卢博*   

  1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030
  • 发布日期:2021-08-09
  • 作者简介:刘一甫(1996— ), 男, 硕士研究生, 研究方向为同调代数. E-mail:1126748944@qq.com*通信作者简介:卢博(1985— ), 男, 博士, 副教授, 研究方向为同调代数. E-mail:lubo55@126.com
  • 基金资助:
    国家自然科学基金资助项目(12061061);西北民族大学创新团队项目(1110130131);西北民族大学一流学科项目

A note on DG-Ding injective complexes

LIU Yi-fu, LU Bo*   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2021-08-09

摘要: 设G是一个复形。引入并研究了DG-Ding内射复形,证明了左凝聚环上复形G是DG-Ding内射的当且仅当G是正合的,对于任意整数n,Zn(G)都是Ding内射模且对任意的DG-FP-内射复形J,复形同态f:J→G是零伦的。

关键词: DG-Ding内射复形, Ding内射模, DG-FP-内射复形

Abstract: Let G be a complex. DG-Ding injective complex is defined and studied. It is proved that G is a DG-Ding injective complex if and only if G is exact with that each Zn(G)is a Ding injective module for any integer n and any homomorphism f:J→G is null homotopic for any DG-FP-injective complex J when R is a left coherent ring.

Key words: DG-Ding injective complex, Ding injective module, DG-FP-injective complex

中图分类号: 

  • O153.3
[1] AUSLAND M, BRIDGER M. Stable module theory[M]. Providence, RI: Amer Math Soc, 1969.
[2] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633.
[3] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2001, 189:167-193.
[4] ENOCHS E E, GARCÍA Rozas J R. Gorenstein injective and projective complexes[J]. Comm Algebra, 1998, 26:1657-1674.
[5] LIU Zhongkui, ZHANG Chunxia. Gorenstein injective complexes of modules over Noetherian rings[J]. J Algebra, 2009, 321:1546-1554.
[6] YANG Xiaoyan, LIU Zhongkui. Gorenstein projectie, injective, and at complexes[J]. Comm Algebra, 2011, 39:1750-1721.
[7] ENOCH E E, JENDA O M G. Relative homological algerbra[M]. Berlin: Walter de Gruyter, 2000.
[8] LU Bo, LAN Kaiyang. A note on DG-Gorenstein injective complexes[J]. Algebra Colloq, 2020, 27:731-740.
[9] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein at modules[J]. J Aust Math Soc, 2009, 86:323-338.
[10] MAO Lixin, DING Nanqing. Gorenstein FP-injective and Gorenstein at modules[J]. J Algebra Appl, 2008, 7:491-506.
[11] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy Appl, 2010, 12:61-73.
[12] GILLESPIE J. On Ding injective, Ding projective and Ding at modules and complexes[J]. Rocky Mountain J Math, 2017, 47:2641-2673.
[13] YANG Gang, LIU Zhongkui, LIANG Li. Ding projective and Ding injective modules[J]. Algebra Colloq, 2013, 20:601-612.
[14] YANG Gang, LIU Zhongkui, LIANG Li. Model structures on categories of complexes over Ding-Chen rings[J]. Comm Algebra, 2013, 41:50-69.
[15] YANG Gang, ESTRADA E. Characterizations of Ding injective complexes[J]. Bull Malays Math Sci Soc, 2020, 43:2385-2398.
[16] SALCE L. Cotorsion theories for Abelian groups[J]. Sympos Math Vol XIII, 1979: 11-32.
[17] GILLESPIE J. The at model structure on Ch(R)[J]. Trans Amer Math Soc, 2004, 356:3369-3390.
[18] YANG G, DA Xuanshang. On Ding projective complexes[J]. Acta Mathmatica Sinica, Chinese Series, 2018, 34:1718-1730.
[19] ENOCHS E E. Cartan-Eilenberg complexes and resolutions[J]. J Algebra, 2011, 342: 16-39.
[20] WANG Zhanping, LIU Zhongkui. FP-injective complexes and FP-injective dimension of complexes[J]. J Aust Math Soc, 2011, 91:163-187.
[21] LU Bo, LIU Zhongkui. Cartan-Eilenberg complexes with respect to cotorsion pairs[J]. Arch Math, 2014, 102:35-48.
[1] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[2] 张铭,张文汇. n-Ding投射模和n-Ding内射模[J]. 《山东大学学报(理学版)》, 2019, 54(4): 60-66.
[3] 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!