您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 93-100.doi: 10.6040/j.issn.1671-9352.0.2022.405

• • 上一篇    下一篇

基于乘法器的混沌系统设计与实现

王忠林1,2,3,刘树堂1   

  1. 1.山东大学控制与科学工程学院, 山东 济南 250061;2.滨州学院航空工程学院, 山东 滨州 256603;3.山东省航空材料与器件工程技术研究中心, 山东 滨州 256603
  • 发布日期:2023-03-02
  • 作者简介:王忠林(1970— ),男,硕士,副教授,研究方向为EDA技术与混沌理论及应用.E-mail:bzcong@126.com
  • 基金资助:
    山东省重点研发计划项目(2017GGX10132)

Design and realization of a chaotic system based on multiplier

WANG Zhong-lin1,2,3, LIU Shu-tang1   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. College of Aeronautical Engineering, Binzhou University, Binzhou 256603, Shandong, China;
    3. Shandong Engineering Research Center of Aeronautical Materials and Devices, Binzhou 256603, Shandong, China
  • Published:2023-03-02

摘要: 利用电阻与电容的串并联特性,提出了一种利用乘法器实现混沌系统的方法。利用该方法用一个电路实现2个Lorenz型混沌系统,实现具有3个乘积项的Qi混沌系统,可以通过改变其中一个电阻的阻值实现从单周期、双周期、四周期、多周期、拟周期及单涡卷混沌到双涡卷混沌的不同的动力学行为的转换。电路实验结果、Multism14软件仿真结果与理论分析结果一致,与原有方法相比,元件数量大大减少。

关键词: 混沌系统, 乘法器, 混沌电路, Multism 14, 运算放大器

Abstract: This paper makes use of the characteristics of resistance and capacitance in series and parallel to propose a method of using the multiplier to realize chaotic system. Using this method, two Lorenz type chaotic systems are realized with one circuit, and Qi chaotic system with three product terms is realized. By changing the resistance value of one of the resistors, different dynamic behaviors can be transformed from single period, double period, four period, multi period, quasi period and single scroll chaos to double scroll chaos. The circuit experiment results and the simulation results of Multism14 software are consistent with the theoretical analysis results. Compared with the original method, the number of components is greatly reduced.

Key words: chaotic system, multiplier, chaotic circuit, Multism 14, operational amplifier

中图分类号: 

  • TN914.42
[1] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2):130-141.
[2] CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7):1465-1466.
[3] LÜ Jinhu, CHEN Guanrong. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3):659-661.
[4] LIU C X, LIU T, LIU L, et al. A new chaotic attractor[J]. Chaos, Solitons & Fractals, 2004, 22(5):1031-1038.
[5] QI G Y, CHEN G R, DU S Z, et al. Analysis of a new chaotic system[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 352(2/3/4):295-308.
[6] LIU Y J, YANG Q G. Dynamics of a new Lorenz-like chaotic system[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4):2563-2572.
[7] 王繁珍,齐国元,陈增强,等. 一个新的三维混沌系统的分析、电路实现及同步[J]. 物理学报,2006,55(8):4005-4012. WANG Fanzhen, QI Guoyuan, CHEN Zengqiang, et al. Analysis, circuit implementation and synchronization of a new three-dimensional chaotic system[J]. Acta Physica Sinica, 2006, 55(8):4005-4012.
[8] 闵富红,田恩刚,叶彪明,等. Lorenz混沌系统模块化电路设计与硬件实验[J]. 实验技术与管理,2018,35(4):44-47. MIN Fuhong, TIAN Engang, YE Biaoming, et al. Modular circuit design and hardware experiment of Lorenz chaotic system[J]. Experimental Technology and Management, 2018, 35(4):44-47.
[9] WANG G Y, QIU S S, LI H W, et al. A new chaotic system and its circuit realization[J]. Chinese Physics, 2006, 15(12):2872-2877.
[10] LI C B, SPROTT J C, JOO-CHEN THIO W, et al. A simple memristive jerk system[J]. IET Circuits, Devices & Systems, 2021, 15(4):388-392.
[11] 王忠林,姚福安,李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. 山东大学学报(理学版), 2008, 43(12):93-96. WANG Zhonglin, YAO Fuan, LI Xiangfeng. Design and realization of a hyperchaotic system based FPGA[J]. Journal of Shandong University(Natural Science), 2008, 43(12):93-96.
[12] SONG Y X, YUAN F, LI Y X. Coexisting attractors and multistability in a simple memristive Wien-bridge chaotic circuit[J]. Entropy, 2019, 21(7):678.
[13] JIANG Y C, LI C B, LIU Z H, et al. Simplified memristive Lorenz oscillator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7):3344-3348.
[14] BLAKELY J N, ESKRIDGE M B, CORRON N J. A simple Lorenz circuit and its radio frequency implementation[J]. Chaos, 2007, 17(2):023112.
[15] WU J Y, LI C B, MA X, et al. Simplification of chaotic circuits with quadratic nonlinearity[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3):1837-1841.
[1] 王杰智, 李航, 王蕊, 王鲁, 王晏超. 一个新四维光滑四翼超混沌系统及电路实现[J]. 山东大学学报(理学版), 2015, 50(11): 104-112.
[2] 杨叶红,肖剑*,马珍珍. 一个新分数阶混沌系统的同步和控制[J]. 山东大学学报(理学版), 2014, 49(2): 76-83.
[3] 张成亮1, 胡春华1, 王忠林1,2. 三系统自动切换混沌电路的设计与实现[J]. J4, 2012, 47(8): 108-113.
[4] 张伟强,刘扬正*. 统一超混沌系统的构建与电路实现[J]. J4, 2011, 46(7): 30-34.
[5] 王忠林1,邓 斌2,侯承玺2,姚福安2. 四翼Liu混沌系统的设计与电路实现[J]. J4, 2010, 45(11): 43-46.
[6] 王忠林 姚福安 李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. J4, 2008, 43(12): 93-96.
[7] 刘汝军,曹玉霞,周 平 . 利用小反馈实现离散非线性混沌系统的反控制[J]. J4, 2007, 42(7): 30-32 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!