《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 93-100.doi: 10.6040/j.issn.1671-9352.0.2022.405
王忠林1,2,3,刘树堂1
WANG Zhong-lin1,2,3, LIU Shu-tang1
摘要: 利用电阻与电容的串并联特性,提出了一种利用乘法器实现混沌系统的方法。利用该方法用一个电路实现2个Lorenz型混沌系统,实现具有3个乘积项的Qi混沌系统,可以通过改变其中一个电阻的阻值实现从单周期、双周期、四周期、多周期、拟周期及单涡卷混沌到双涡卷混沌的不同的动力学行为的转换。电路实验结果、Multism14软件仿真结果与理论分析结果一致,与原有方法相比,元件数量大大减少。
中图分类号:
[1] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2):130-141. [2] CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7):1465-1466. [3] LÜ Jinhu, CHEN Guanrong. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3):659-661. [4] LIU C X, LIU T, LIU L, et al. A new chaotic attractor[J]. Chaos, Solitons & Fractals, 2004, 22(5):1031-1038. [5] QI G Y, CHEN G R, DU S Z, et al. Analysis of a new chaotic system[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 352(2/3/4):295-308. [6] LIU Y J, YANG Q G. Dynamics of a new Lorenz-like chaotic system[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4):2563-2572. [7] 王繁珍,齐国元,陈增强,等. 一个新的三维混沌系统的分析、电路实现及同步[J]. 物理学报,2006,55(8):4005-4012. WANG Fanzhen, QI Guoyuan, CHEN Zengqiang, et al. Analysis, circuit implementation and synchronization of a new three-dimensional chaotic system[J]. Acta Physica Sinica, 2006, 55(8):4005-4012. [8] 闵富红,田恩刚,叶彪明,等. Lorenz混沌系统模块化电路设计与硬件实验[J]. 实验技术与管理,2018,35(4):44-47. MIN Fuhong, TIAN Engang, YE Biaoming, et al. Modular circuit design and hardware experiment of Lorenz chaotic system[J]. Experimental Technology and Management, 2018, 35(4):44-47. [9] WANG G Y, QIU S S, LI H W, et al. A new chaotic system and its circuit realization[J]. Chinese Physics, 2006, 15(12):2872-2877. [10] LI C B, SPROTT J C, JOO-CHEN THIO W, et al. A simple memristive jerk system[J]. IET Circuits, Devices & Systems, 2021, 15(4):388-392. [11] 王忠林,姚福安,李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. 山东大学学报(理学版), 2008, 43(12):93-96. WANG Zhonglin, YAO Fuan, LI Xiangfeng. Design and realization of a hyperchaotic system based FPGA[J]. Journal of Shandong University(Natural Science), 2008, 43(12):93-96. [12] SONG Y X, YUAN F, LI Y X. Coexisting attractors and multistability in a simple memristive Wien-bridge chaotic circuit[J]. Entropy, 2019, 21(7):678. [13] JIANG Y C, LI C B, LIU Z H, et al. Simplified memristive Lorenz oscillator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7):3344-3348. [14] BLAKELY J N, ESKRIDGE M B, CORRON N J. A simple Lorenz circuit and its radio frequency implementation[J]. Chaos, 2007, 17(2):023112. [15] WU J Y, LI C B, MA X, et al. Simplification of chaotic circuits with quadratic nonlinearity[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3):1837-1841. |
[1] | 王杰智, 李航, 王蕊, 王鲁, 王晏超. 一个新四维光滑四翼超混沌系统及电路实现[J]. 山东大学学报(理学版), 2015, 50(11): 104-112. |
[2] | 杨叶红,肖剑*,马珍珍. 一个新分数阶混沌系统的同步和控制[J]. 山东大学学报(理学版), 2014, 49(2): 76-83. |
[3] | 张成亮1, 胡春华1, 王忠林1,2. 三系统自动切换混沌电路的设计与实现[J]. J4, 2012, 47(8): 108-113. |
[4] | 张伟强,刘扬正*. 统一超混沌系统的构建与电路实现[J]. J4, 2011, 46(7): 30-34. |
[5] | 王忠林1,邓 斌2,侯承玺2,姚福安2. 四翼Liu混沌系统的设计与电路实现[J]. J4, 2010, 45(11): 43-46. |
[6] | 王忠林 姚福安 李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. J4, 2008, 43(12): 93-96. |
[7] | 刘汝军,曹玉霞,周 平 . 利用小反馈实现离散非线性混沌系统的反控制[J]. J4, 2007, 42(7): 30-32 . |
|