您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 113-117, 126.doi: 10.6040/j.issn.1671-9352.0.2023.033

•   • 上一篇    下一篇

平面凸体的Wulff曲率积分不等式

王亚玲(),董旭,曾春娜*()   

  1. 重庆师范大学数学科学学院,重庆 401331
  • 收稿日期:2023-01-12 出版日期:2024-08-20 发布日期:2024-07-31
  • 通讯作者: 曾春娜 E-mail:wangyl7228@163.com;zengchn@163.com
  • 作者简介:王亚玲(1999—),女,硕士研究生,研究方向为积分几何与凸几何分析. E-mail:wangyl7228@163.com
  • 基金资助:
    重庆英才青年拔尖计划资助项目(CQYC2021059145);重庆市研究生科研创新资助项目(CYS23412);重庆市教育委员会科学技术研究项目(KJQN201900530);重庆市教育委员会科学技术研究项目(KJZD-K202200509)

Integral inequality of Wulff curvature for plane convex bodies

Yaling WANG(),Xu DONG,Chunna ZENG*()   

  1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2023-01-12 Online:2024-08-20 Published:2024-07-31
  • Contact: Chunna ZENG E-mail:wangyl7228@163.com;zengchn@163.com

摘要:

本文主要研究平面上Wulff流情形下的Wulff曲率积分不等式。利用Green-Osher不等式和Wulff-Steiner多项式获得了对称与非对称凸体的任意次幂的Wulff曲率积分不等式。特别地,当其中一凸体为单位圆时,获得了平面凸曲线任意次幂的曲率积分不等式。

关键词: 凸体, Steiner多项式, Green-Osher不等式, Wulff曲率, Wulff-Steiner多项式

Abstract:

In this paper, we mainly study the integral inequality of Wulff curvature in the case of Wulff flow on the plane. By using Green-Osher inequality and Wulff-Steiner polynomials, we obtain the Wulff curvature integral inequality of any power of symmetric and nonsymmetric convex bodies. Specifically, when one of the convex bodies is an unit circle, the curvature integral inequality of any powers of the plane convex curve is obtained.

Key words: convex body, Steiner polynomial, Green-Osher inequality, Wulff curvature, Wulff-Steiner polynomial

中图分类号: 

  • O186.5
1 GAGE M E . An isoperimetric inequality with applications to curve shortening[J]. Duke Mathematical Joural, 1983, 50 (4): 1225- 1229.
2 GREEN M , OSHER S . Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves[J]. Asian Journal of Mathematics, 1999, 3 (3): 659- 676.
doi: 10.4310/AJM.1999.v3.n3.a5
3 ZHOU Jiazu . Curvature inequalities for curves[J]. Inter Comp Math Sci Appl, 2007, 1, 145- 147.
4 PAN Shengliang , YANG Juanna . On a nonlocal perimeter preserving curve evolution problem for convex plane curves[J]. Manuscripta Mathematica, 2008, 127 (4): 469- 484.
doi: 10.1007/s00229-008-0211-x
5 OSSERMAN R . Curvature in the eighties[J]. The American Mathematical Monthly, 1990, 97 (8): 731- 756.
doi: 10.1080/00029890.1990.11995659
6 ZHOU Jiazu , JIANG Deshuo , LI Ming , et al. Ros' theorem for hypersurfaces[J]. Acta Math Sinica, 2009, (6): 1075- 1084.
7 ESCUDERO C , REVENTÓ S A , SOLANES G . Focal sets in two-dimensional space forms[J]. Pacific Journal of Mathematics, 2007, 233 (2): 309- 320.
doi: 10.2140/pjm.2007.233.309
8 GAO Laiyuan , PAN Shengliang , TSAI D H . Nonlocal flow driven by the radius of curvature with fixed curvature integral[J]. The Journal of Geometric Analysis, 2020, 30 (3): 2939- 2973.
doi: 10.1007/s12220-019-00185-4
9 LIN Yuchu , TSAI D H . Application of Andrews and Green-Osher inequalities to nonlocal flow of convex plane curves[J]. Journal of Evolution Equations, 2012, 12 (4): 833- 854.
doi: 10.1007/s00028-012-0157-z
10 YANG Yunlong . Nonsymmetric extension of the Green-Osher inequality[J]. Geometriae Dedicata, 2019, 203 (1): 155- 161.
doi: 10.1007/s10711-019-00430-8
11 YANG Yunlong , ZHANG Deyan . The Green-Osher inequality in relative geometry[J]. Bulletin of the Australian Mathematical Society, 2016, 94 (1): 155- 164.
doi: 10.1017/S0004972715001859
12 GAO Laiyuan , PAN Shengliang , YANG Yunlong . Some notes on Green-Osher's inequality[J]. Journal of Mathematical Inequalities, 2015, 9 (2): 369- 380.
13 马磊, 曾春娜. 关于Wulff流情形下的等周不等式的注记[J]. 数学物理学报, 2015, 35 (2): 306- 311.
MA Lei , ZENG Chunna . Remark on isoperimetric inequalities in the Wullf case[J]. Acta Mathematica Scientia: Series A, 2015, 35 (2): 306- 311.
14 任德麟. 积分几何引论[M]. 上海: 上海科学技术出版社, 1988.
REN Delin . Introduction to integral geometry[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988.
15 SANTALÓ L A . Integral geometry and geometric probability[M]. Cambridge: Cambridge University Press, 2004.
16 周家足, 任德麟. 从积分几何观点看几何不等式[J]. 数学物理学报, 2010, 30 (5): 1322- 1399.
ZHOU Jiazu , REN Delin . Geometric inequalities from integral geometry point of view[J]. Acta Mathematica Scientia, 2010, 30 (5): 1322- 1399.
17 XI Dongmeng , LENG Gangsong . Dar's conjecture and the log-Brunn-Minkowski inequality[J]. Journal of Differential Geometry, 2016, 103 (1): 145- 189.
[1] 马统一1,2,刘春燕2. Lp-混合投影体的Shephard问题与Minkowski-Funk变换[J]. J4, 2012, 47(10): 21-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[2] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[3] 王红妹,肖敏*,李正义,李玉梅,钱新民 . 转糖基β-半乳糖苷酶产生菌筛选和鉴定及酶催化生成低聚半乳糖[J]. J4, 2006, 41(1): 133 -139 .
[4] 张佳丽,苗连英,宋文耀. 最大度为8不含相邻4-圈的1-平面图边色数[J]. 山东大学学报(理学版), 2014, 49(04): 18 -23 .
[5] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[6] 任敏1,2,张光辉1. 右半直线上依分布收敛独立随机环境中随机游动的吸收概率[J]. J4, 2013, 48(1): 93 -99 .
[7] 徐俊峰. 关于复代数微分方程亚纯解的增长级[J]. J4, 2010, 45(6): 91 -93 .
[8] 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30 -32 .
[9] 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108 -113 .
[10] 陆玮洁,主沉浮,宋 翠,杨艳丽 . 中药郁金中无机离子的毛细管电泳法测定[J]. J4, 2007, 42(7): 13 -18 .