您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 101-106.doi: 10.6040/j.issn.1671-9352.0.2023.048

• • 上一篇    

积运算符号图的谱

方子强1,李龙捷1,任海珍1,2,3*   

  1. 1.青海师范大学数学与统计学院, 青海 西宁 810008;2.藏文信息处理与应用国家重点实验室, 青海 西宁 810008;3.高原科学与可持续发展研究院, 青海 西宁 810008
  • 发布日期:2024-10-10
  • 通讯作者: 任海珍(1966— ),女,教授,博士,研究方向为图论与组合优化. E-mail:renhaizhen@qhnu.edu.cn
  • 基金资助:
    青海省自然科学基金资助项目(2020-ZJ-924);国家自然科学基金资助项目(12161073)

Spectra of product operation signed graphs

FANG Ziqiang1, LI Longjie1, REN Haizhen1,2,3*   

  1. 1. Department of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. The State Key Laboratory of Tibetan Information Processing and Application, Xining 810008, Qinghai, China;
    3. Academy of Plateau, Science and Sustainability, Xining 810008, Qinghai, China
  • Published:2024-10-10

摘要: 对图中的每条边标记正边或负边,这样的图称为符号图。给出符号图的积运算(对称积、直积、半强积、强积)的定义,得到这些积运算符号图邻接矩阵的张量形式,并得到积运算(直积、半强积、强积)符号图的邻接谱。

关键词: 符号图, 符号图的积运算, 邻接矩阵, 邻接谱

Abstract: A graph whose edges are labeled either as positive or negative is called a signed graph. The product operations, i.e. symmetric product, direct product, semi-strong product and strong product, of signed graphs are given, respectively. The adjacency matrices of these product operation signed graphs in tensor form are obtained, and some relations on the eigenvalues of signed graphs on product operations(direct product, semi-strong product, strong product)are also formulated.

Key words: signed graph, product operation of signed graph, adjacency matrix, adjacency spectrum

中图分类号: 

  • O157.5
[1] HARARY F. On the notion of balance in a signed graph[J]. Michigan Mathematical Journal, 1953, 2(1):143-146.
[2] BARAHONA F. On the computational complexity of Ising spin glass models[J]. Journal of Physics A: Mathematical and General, 1982, 15(10):3241.
[3] CARTWRIGHT D, HARARY F. Structural balance: a generalization of Heiders theory[J]. Psychological Review, 1956, 63(5):277.
[4] ZASLAVSKY T. A mathematical bibliography of signed and gain graphs and allied areas[J]. Electronic Journal of Combinatorics, 1998, 8:1-151.
[5] 张苗,强晶晶,高瑞梅. Dn型通有构形的特征多项式[J]. 山东大学学报(理学版), 2022, 57(10):106-110. ZHANG Miao, QIANG Jingjing, GAO Ruimei. Characteristic polynomials for the generic arrangements of type Dn[J]. Journal of Shandong University(Natural Science), 2022, 57(10):106-110.
[6] 张远平,刘晓刚. 符号图的一些谱关系(英文)[J]. 广州大学学报(自然科学版), 2012, 11(1):83-86. ZHANG Yuanping, LIU Xiaogang. Some spectral relations of symbolic graphs(English)[J]. Journal of Guangzhou University(Natural Science), 2012,11(1):83-86.
[7] ZHANG Fuzhen. Matrix theory: basic results and techniques[M]. New York: Springer, 1999.
[8] GERMINA K A, SHAHUL H K, ZASLAVSKY T. On products and line graphs of signed graphs, their eigenvalues and energy[J]. Linear Algebra and Its Applications, 2010, 435(10):2432-2450.
[9] GERMINA K A, HAMEED K S. On composition of signed graphs[J]. Discussiones Mathematicae Graph Theory, 2012, 32(3):507-516.
[10] BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan Press Ltd., 1976.
[11] GROSS J L, TUCKER T W. Topological graph theory[M]. New York: John Wiley & Sons, 1987.
[1] 王力工,郁志明,周枫,陶丽杰,邢露淇. 基于完全图构造的两类整图[J]. 《山东大学学报(理学版)》, 2023, 58(11): 155-159.
[2] 张苗,强晶晶,高瑞梅. Dn型通有构形的特征多项式[J]. 《山东大学学报(理学版)》, 2022, 57(10): 106-110.
[3] 贾淑香,邓波,冶成福,付凤,陈辉龙. 图的Resolvent Estrada指标的上(下)界刻画[J]. 《山东大学学报(理学版)》, 2020, 55(4): 92-96.
[4] 高瑞梅,初颖. Weyl构形An-1Bn之间的构形的自由性[J]. 山东大学学报(理学版), 2018, 53(6): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!