您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 9-14.doi: 10.6040/j.issn.1671-9352.0.2023.321

•   • 上一篇    下一篇

SS-拟正规子群对有限群p-幂零性的影响

高建玲1(),毛月梅1,*(),曹陈辰2   

  1. 1. 山西大同大学数学与统计学院, 山西 大同 037009
    2. 宁波大学数学与统计学院, 浙江 宁波 315211
  • 收稿日期:2023-07-22 出版日期:2024-08-20 发布日期:2024-07-31
  • 通讯作者: 毛月梅 E-mail:gaojl1981@163.com;maoyuemei@126.com
  • 作者简介:高建玲(1981—), 女, 讲师, 硕士, 研究方向为群论. E-mail: gaojl1981@163.com
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(12101339);国家自然科学基金资助项目(12371021);山西大同大学科研基金资助项目(2020K8)

Influence of SS-quasinormal subgroups on p-nilpotence of finite groups

Jianling GAO1(),Yuemei MAO1,*(),Chenchen CAO2   

  1. 1. School of Mathematics and Statistics, Shanxi Datong University, Datong 037009, Shanxi, China
    2. School of Mathematics and Statistics, Ningbo University, Ningbo 315211, Zhejiang, China
  • Received:2023-07-22 Online:2024-08-20 Published:2024-07-31
  • Contact: Yuemei MAO E-mail:gaojl1981@163.com;maoyuemei@126.com

摘要:

G为有限群,子群H称为在G中SS-拟正规,若存在BG满足G=HB,且对所有pπ(B),P∈Sylp(B),有HP=PH皆成立。借助准素数子群的SS-拟正规性研究有限群结构,利用对|G|的归纳法及极小阶反例法, 给出了p-幂零群若干新的判别准则。

关键词: SS-拟正规子群, p-幂零群, p-超可解群, 归纳法, 极小阶反例

Abstract:

Let G be a finite group. A subgroup H is called SS-quasinormal in G if there is a subgroup B of G such that G=HB, and HP=PH holds for all prime pπ(B) and P∈Sylp(B). The structures of finite groups with SS-quasinormality of primary subgroups are studied. Some new criteria of p-nilpotent group are given by using induction on the order of G and counterexample of minimal order.

Key words: SS-quasinormal subgroup, p-nilpotent group, p-supersolvable group, induction, counterexample of minimal order

中图分类号: 

  • O152.1
1 DOERK K, HAWKES T O. Finite soluble groups[M]. Berlin: Walter de Gruyter, 1992: 871-887.
2 GUO Wenbin .The theory of class of groups[M].Beijing: Science Press-Kluwer Academic Publishers,2000:250-258.
3 KEGEL O H .Sylow grouppen and subnormalteiler endlicher grouppen[J].Mathematische Zeitschrift,1962,78(1):205-221.
doi: 10.1007/BF01195169
4 LI Shirong , SHEN Zhencai , LIU Jianjun , et al.The influence of SS-quasinormality of some subgroups on the structure of finite groups[J].Journal of Algebra,2008,319(10):4275-4287.
doi: 10.1016/j.jalgebra.2008.01.030
5 ZHONG Guo , LIN Shixun .On the SS-quasinormality of the maximal subgroups of a Sylow subgroup in its normalizer[J].Ricerche di Matematica,2016,65(1):187-192.
doi: 10.1007/s11587-016-0259-y
6 KONG Qingjun , GUO Xiuyun .On weakly s-semipermutable or ss-quasinormal subgroups of finite groups[J].Ricerche di Matematica,2019,68(2):571-579.
doi: 10.1007/s11587-018-0427-3
7 GAO Jianling , MAO Yuemei .On SS-quasinormal subgroups of finite groups[J].Advances in Mathematics,2023,52(4):647-654.
8 GORENSTEIN D .Finite groups[M].New York: Harper & Row,1968:280-281.
9 HELIEL A A , AL-SHOMRANI M M , AL-GAFRI T M .On weakly $\mathscr{Z} $-permutable subgroups of finite groups Ⅱ[J].Arabian Journal of Mathematics,2016,5(1):63-68.
doi: 10.1007/s40065-015-0129-6
10 BALLESTER-BOLINCHES A, ESTBAN-ROMERO R, ASAAD M. Products of finite groups[M]. Berlin: Walter de Gruyter, 2010: 54-57.
11 WEINSTEIN M .Between nilpotent and solvable[M].Passaic: Polygonal Publishing House,1982:27-28.
12 GAO Jinxin , GUO Xiuyun .A note on HC-subgroups of finite groups[J].Bulletin of the Iranian Mathematical Society,2018,44(2):505-511.
doi: 10.1007/s41980-018-0034-9
13 HAO Liping , ZHANG Xinjian , YU Qin .The influence of X-s-semipermutable subgroups on the structure of finite groups[J].Southeast Asian Bulletin of Mathematics,2009,33(3):421-432.
14 WEI Xianbiao , GUO Xiuyun .On SS-quasinormal subgroups and the structure of finite groups[J].Science China Mathematics,2011,54(3):449-456.
doi: 10.1007/s11425-010-4080-x
[1] 吴晨,金英花,王世丽. 等级制度下带有白噪声的群集运动[J]. 《山东大学学报(理学版)》, 2018, 53(12): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[2] 张爱平,李刚 . LR拟正规Ehresmann半群[J]. J4, 2006, 41(5): 44 -47 .
[3] 边斐,何海伦,陈秀兰*,张玉忠 . 离子对深海适冷菌Pseudoalteromonas sp. SM9913胞外蛋白酶分泌的影响[J]. J4, 2006, 41(5): 166 -172 .
[4] 王 震,张 琎 . NLS方程的守恒数值格式及其收敛性分析[J]. J4, 2007, 42(3): 13 -17 .
[5] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[6] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[7] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .
[8] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[9] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[10] 马继雄,江莉,祁驭矜,向凤宁,夏光敏 . 祁连龙胆愈伤组织和再生植株的生长及其两种药效成分分析[J]. J4, 2006, 41(6): 157 -160 .