您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (11): 31-39.doi: 10.6040/j.issn.1671-9352.0.2023.375

•   • 上一篇    下一篇

海黍子不同生长部位附生菌群结构比较

郭战胜1,2(),常丽荣2,陈雯静1,侯旭光1,施坤涛3,*()   

  1. 1. 山东大学海洋学院,山东 威海 264200
    2. 威海长青海洋科技股份有限公司,山东 威海 264300
    3. 威海市环翠区海洋发展研究中心,山东 威海 264200
  • 收稿日期:2023-08-31 出版日期:2024-11-20 发布日期:2024-11-29
  • 通讯作者: 施坤涛 E-mail:guozhansheng@sdu.edu.cn;shikuntao@163.com
  • 作者简介:郭战胜(1987—),男,助理研究员,博士,研究方向为海洋牧场微生态. E-mail: guozhansheng@sdu.edu.cn
  • 基金资助:
    山东省现代农业产业技术体系刺参产业技术体系资助项目(SDAIT-22-14)

Comparison studies of epiphytic microbial communities associated with different growth regions of Sargassum muticum

Zhansheng GUO1,2(),Lirong CHANG2,Wenjing CHEN1,Xuguang HOU1,Kuntao SHI3,*()   

  1. 1. Marine College, Shandong University, Weihai 264200, Shandong, China
    2. Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264300, Shangdong, China
    3. Huancui District Marine Development Research Center, Weihai 264200, Shandong, China
  • Received:2023-08-31 Online:2024-11-20 Published:2024-11-29
  • Contact: Kuntao SHI E-mail:guozhansheng@sdu.edu.cn;shikuntao@163.com

摘要:

海黍子(Sargassum muticum)是我国黄渤海沿岸海藻床构建的重要支撑物种,有较高的生态和经济价值,目前关于海黍子的基础生态研究主要从宏观层面入手,鲜有涉及微生态层面。本研究以靖子湾潮间带生长的海黍子为研究对象,自然海水为对照,采用16S rRNA基因高通量测序技术比较海黍子不同生长部位(气囊、叶、主枝、固着器)附生菌群结构。研究结果表明,海黍子不同生长部位样本中,固着器样本附着菌群的多样性和物种丰富度最高,叶样本物种丰富度最低,气囊样本的附生菌群多样性均小于其他生长部位。PCoA和Anosim分析表明海黍子不同生长部位附生菌群结构与海水中游离的微生物群落结构差异显著(p < 0.05),而藻体自身不同生长部位之间差异不显著(p≥0.05)。群落结构组成结果表明,变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidota)为主要优势菌门,相对丰度为80.51%~87.64%。海黍子气囊、叶和主枝样本优势菌属为Yoonia-Loktanella(11.90%~18.02%),固着器优势菌属为Pleurocapsa_PCC-7319(7.48%)。LEfSe分析共识别出15个生物标志物,其中海黍子气囊、固着器和海水分别有5、1和9个。Tax4Fun功能预测表明海黍子不同生长部位附生菌群的生态功能组成相似,最主要的功能是新陈代谢(metabolism,46.16%~48.35%),其次是遗传信息处理(genetic information processing,21.18%~22.88%)和环境信息处理(environmental information processing,12.03%~13.96%)。本研究通过比较海黍子不同生长部位附生菌群结构,为进一步深入了解海黍子生态作用提供理论依据。

关键词: 海黍子, 附生菌群, 高通量测序, 群落结构, 功能预测

Abstract:

Sargasum muticum is one of the important species for constructing seaweed beds distributed in the intertidal zone of the Yellow Sea and Bohai Sea of China, with high ecological and economic values. While the basic ecological studies of S. muticum are mainly from a macrocosmic viewpoint, our understanding of their impact on microecology remains limited. In this study, the epiphytic microbial communities associated with different growth regions (including vesicles, blades, stalks and holdfast) of S. muticum collected from the intertidal zone of Jingzi Bay were characterized using high throughput sequencing technology, the natural seawater was served as control. The results showed that the holdfast sample of S. muticum displayed the highest level of microbial richness and diversity, while the lowest microbial richness was in the blade sample, and the microbial diversity and evenness were lower in the vesicle sample than in other growth regions. PCoA and Anosim analyses showed that the structure of the microbial communities on S. muticum is distinct from those of planktonic communities (p < 0.05), while no significant differences were observed between different growth regions of S. muticum (p≥0.05). The community structure analysis results showed that Proteobacteria, Firmicute and Bacteroidota were the common predominant phyla, with the relative abundance of 80.51%-87.64%; Yoonia-Loktanella was most dominant genus in the samples from the vesicle, blade and stalk (11.90%-18.02%), the dominant genus of the holdfast samples is Pleurocapsa_ PCC-7319 (7.48%). A total of 15 biomarkers were identified using LEfse analysis, of which 5, 1, and 9 biomarkers in the sample groups from vesicle, holdfast and water, respectively. The metagenome function prediction of S. muticum was carried out using Tax4Fun software, metabolism was prominent common function (46.16%-48.35%), followed by genetic information processing (21.18%-22.88%) and environmental information processing (12.03%-13.96%). This study would provide a theoretical basis for in-depth understanding of the ecological characteristics of S. muticum by comparing the epiphytic microbial communities associated with different growth regions of the seaweed.

Key words: Sargassum muticum, epiphytic microbiota, high throughput sequencing, community structure, function prediction

中图分类号: 

  • Q938.8

图1

海黍子采样示意图"

表1

微生物群落的α多样性指数"

样品组别 Shannon指数 Chao 1指数 Pielou指数
6.900±0.542a 504.310±117.044a 0.866±0.036a
固着器 7.137±0.922a 878.494±54.764a 0.858±0.074a
主枝 6.755±0.947a 735.082±396.423a 0.832±0.074a
气囊 6.413±1.374a 530.727±272.692a 0.820±0.100a
海水 7.095±0.063a 1 659.236±179.079b 0.837±0.009a

图2

微生物群落的韦恩图和主坐标分析 SMB—海黍子叶片;SMS—海黍子主枝;SMH—海黍子固着器;SMV—海黍子气囊;W—海水。"

图3

基于门、科和属水平的微生物群落结构组成 SMB—海黍子叶片;SMS—海黍子主枝;SMH—海黍子固着器;SMV—海黍子气囊;W—海水。"

图4

LEfSe分析的进化分支图 SMB—海黍子叶片;SMS—海黍子主枝;SMH—海黍子固着器;SMV—海黍子气囊;W—海水。注:对显著差异的分类单元节点填色,黄色节点代表组间差异不显著,每个节点的直径代表每个分类单元的相对丰度。"

图5

第二水平上的Tax4Fun功能注释聚类热图 SMB—海黍子叶片;SMS—海黍子主枝;SMH—海黍子固着器;SMV—海黍子气囊;W—海水。"

1 丁兰平, 夏恩湛, 郑宝福, 等. 中国黄渤海海藻[M]. 北京: 科学出版社, 2009: 453.
DING Lanping , XIA Enzhan , ZHENG Baofu , et al. Seaweeds in Yellow Sea and Bohai Sea of China[M]. Beijing: Science Press, 2009: 453.
2 YU P , DONG S , LI J , et al. Diversity and ecological function of Sargassum miyabei communities in the Yellow Sea[J]. Marine Pollution Bulletin, 2018, 126, 480- 486.
3 LI F , CHEN Y , XIE Z , et al. Role of Sargassum miyabei beds in sustaining macrobenthic diversity in shallow coastal waters of the East China Sea[J]. Marine Environmental Research, 2019, 144, 78- 86.
4 STIGER-POUVREAU V , MATTIO L , N'YEURT A D R , et al. A concise review of the highly diverse genus Sargassum C. Agardh with wide industrial potential[J]. Journal of Applied Phycology, 2023, 35 (4): 1453- 1483.
doi: 10.1007/s10811-023-02959-4
5 王翔宇, 徐智广, 李莉, 等. 海黍子增殖技术的初步研究[J]. 海洋湖沼通报, 2020, (2): 160- 165.
WANG Xiangyu , XU Zhiguang , LI Li , et al. The preliminary study on the proliferation technology of Sargassum muticum[J]. Transactions of Oceanology and Limnology, 2020, (2): 160- 165.
6 刘玮, 辛美丽, 周健, 等. 基于生境适宜性指数模型的俚岛海黍子生境层级分布[J]. 应用生态学报, 2021, 32 (3): 1061- 1068.
LIU Wei , XIN Meili , ZHOU Jian , et al. Habitat hierarchies distribution of Sargassum muticum in Lidao bay, Shandong, China based on habitat suitability index model[J]. Chinese Journal of Applied Ecology, 2021, 32 (3): 1061- 1068.
7 RAOUX A , PEZY J P , SPORNIAK T , et al. Does the invasive macro-algae Sargassum muticum (Yendo) Fensholt, 1955 offer an appropriate temporary habitat for mobile fauna including non-indigenous species?[J]. Ecological Indicators, 2021, 126, 107624.
doi: 10.1016/j.ecolind.2021.107624
8 刘莹璐, 陈从立, 付亮, 等. 藻际环境中微生物胞间通讯行为及作用[J]. 微生物学报, 2022, 62 (1): 33- 46.
LIU Yinglu , CHEN Congli , FU Liang , et al. The roles of 'cell-to-cell communication' in phycosphere[J]. Acta Microbiologica Sinica, 2022, 62 (1): 33- 46.
9 LI J S , WEINBERGER F , DENYS R , et al. A pathway to improve seaweed aquaculture through microbiota manipulation[J]. Trends in Biotechnology, 2023, 41 (4): 545- 556.
doi: 10.1016/j.tibtech.2022.08.003
10 VAN DER LOOS L M , ERIKSSON B K , FALCÃO SALLES J . The macroalgal holobiont in a changing sea[J]. Trends in Microbiology, 2019, 27 (7): 635- 650.
doi: 10.1016/j.tim.2019.03.002
11 LI H , LI J J , GAO T H , et al. The influence of host specificity and temperature on bacterial communities associated with Sargassum (Phaeophyceae) species[J]. Journal of Phycology, 2022, 58 (6): 815- 828.
doi: 10.1111/jpy.13293
12 LEMAY M A , DAVIS K M , MARTONE P T , et al. Kelp-associated microbiota are structured by host anatomy[J]. Journal of Phycology, 2021, 57 (4): 1119- 1130.
doi: 10.1111/jpy.13169
13 BONTHOND G , BARILO A , ALLEN R J , et al. Fungal endophytes vary by species, tissue type, and life cycle stage in intertidal macroalgae[J]. Journal of Phycology, 2022, 58 (2): 330- 342.
doi: 10.1111/jpy.13237
14 IHUA M W , FITZGERALD J A , GUIHÉNEUF F , et al. Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitate[J]. PLoS One, 2020, 15 (11): e0242675.
doi: 10.1371/journal.pone.0242675
15 SMITH S D . Evaluating stress in rocky shore and shallow reef habitats using the macrofauna of kelp holdfasts[J]. Journal of Aquatic Ecosystem Stress and Recovery, 2000, 7 (4): 72- 259.
16 BENGTSSON M , SJOTUN K , OVREAS L . Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborean[J]. Aquatic Microbial Ecology, 2010, 60, 71- 83.
doi: 10.3354/ame01409
17 MEI X , WU C , ZHAO J , et al. Community structure of bacteria associated with drifting Sargassum horneri, the causative species of Golden Tide in the Yellow Sea[J]. Frontiers in Microbiology, 2019, 10, 1192.
doi: 10.3389/fmicb.2019.01192
18 LEMAY M A , CHEN M Y , MAZEL F , et al. Morphological complexity affects the diversity of marine microbiomes[J]. ISME Journal, 2021, 15 (5): 1372- 1386.
doi: 10.1038/s41396-020-00856-z
19 EGAN S , THOMAS T , KJELLEBERG S . Unlocking the diversity and biotechnological potential of marine surface associated microbial communities[J]. Current Opinion in Microbiology, 2008, 11 (3): 219- 225.
doi: 10.1016/j.mib.2008.04.001
20 周新倩, 杨锐, 吴小凯, 等. 基于16S rDNA分析的浒苔外生细菌多样性研究[J]. 水产学报, 2016, 40 (1): 110- 118.
ZHOU Xinqian , YANG Rui , WU Xiaokai , et al. Diversity of Ulva spp. (Enteromorpha spp.) epiphytic bacteria based on 16S rDNA sequences[J]. Journal of Fisheries of China, 2016, 40 (1): 110- 118.
21 STARKO S , CLAMAN B Z , MARTONE P T . Biomechanical consequences of branching in flexible wave-swept macroalgae[J]. New Phytologist, 2015, 206 (1): 133- 140.
doi: 10.1111/nph.13182
22 DENNY M , GAYLORD B . The mechanics of wave-swept algae[J]. Journal of Experimental Biology, 2002, 205 (10): 1355- 1362.
doi: 10.1242/jeb.205.10.1355
23 MARTONE PT , KOST L , BOLLER M . Drag reduction in wave-swept macroalgae: alternative strategies and new predictions[J]. American Journal of Botany, 2012, 99 (5): 806- 815.
doi: 10.3732/ajb.1100541
24 HONKANEN T , JORMALAINEN V . Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus[J]. Oecologia, 2005, 144 (2): 196- 205.
doi: 10.1007/s00442-005-0053-0
25 STARKO S , MANSFIELD S D , MARTONE P T . Cell wall chemistry and tissue structure underlie shifts in material properties of a perennial kelp[J]. The European Journal of Phycology, 2018, 53, 307- 317.
doi: 10.1080/09670262.2018.1449013
26 GUO Z S , WANG L , JIANG Z Y , et al. Comparison studies of epiphytic microbial communities on four macroalgae and their rocky substrates[J]. Marine Pollution Bulletin, 2022, 176, 113435.
doi: 10.1016/j.marpolbul.2022.113435
27 LU D , WANG F , AMANN R I , et al. Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae[J]. Microbiome, 2023, 11 (1): 126.
doi: 10.1186/s40168-023-01559-1
28 FLOREZ J Z , CAMUS C , HENGST M B , et al. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction[J]. Frontiers in Microbiology, 2017, 8, 2561.
doi: 10.3389/fmicb.2017.02561
29 AHMED A , KHURSHID A , TANG X , et al. Structural and functional impacts of microbiota on Pyropia yezoensis and surrounding seawater in cultivation farms along coastal areas of the Yellow Sea[J]. Microorganisms, 2021, 9 (6): 1291.
doi: 10.3390/microorganisms9061291
30 LIANG Z , LIU F , WANG W , et al. High-throughput sequencing revealed differences of microbial community structure and diversity between healthy and diseased Caulerpa lentillifera[J]. BMC Microbiology, 2019, 19 (1): 225.
doi: 10.1186/s12866-019-1605-5
[1] 郭战胜,张海涛,侯旭光. 4种鲍肠道菌群多样性比较[J]. 《山东大学学报(理学版)》, 2022, 57(1): 1-7.
[2] 郭战胜,丁一,张海涛,侯旭光. 海水养殖循环系统不同功能区域微生物群落结构比较[J]. 《山东大学学报(理学版)》, 2021, 56(9): 21-27,49.
[3] 洪丕征,刘世荣,于浩龙,郝建. 模拟氮沉降对红椎人工幼龄林土壤微生物生物量和微生物群落结构的影响[J]. 山东大学学报(理学版), 2016, 51(5): 18-28.
[4] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[2] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[3] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .
[4] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[5] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[6] 马继雄,江莉,祁驭矜,向凤宁,夏光敏 . 祁连龙胆愈伤组织和再生植株的生长及其两种药效成分分析[J]. J4, 2006, 41(6): 157 -160 .
[7] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[8] 马建玲 . 菱体型消色差相位延迟器的光谱特性分析[J]. J4, 2007, 42(7): 27 -29 .
[9] 王康 李华. 化学计量学方法用于蛤青注射色谱数据重叠峰的分辨[J]. J4, 2009, 44(11): 16 -20 .
[10] 陈 莉, . 非方广义系统带干扰抑制的奇异LQ次优控制问题[J]. J4, 2006, 41(2): 74 -77 .