《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 103-109.doi: 10.6040/j.issn.1671-9352.0.2023.463
喜霞,李永祥*
XI Xia, LI Yongxiang*
摘要: 讨论非线性项中含导数项的二阶时滞常微分方程-u″(t)+a(t)u(t)=f(t,u(t),u(t-τ),u'(t)), t∈R的2π-周期解的存在性与唯一性,其中a:R→(0,+∞)为以2π为周期的连续函数, f:R4→R连续, f(t,x,y,z)关于t以2π为周期,τ>0为常数。在非线性项f满足适当的不等式条件下,应用Leray-Schauder不动点定理与先验估计技巧,获得该方程2π-周期解的存在性与唯一性结果。
中图分类号:
| [1] LI J W, CHENG S S. Periodic solutions of a second order forced sublinear differential equation with delay[J]. Applied Mathematics Letters, 2005, 18:1373-1380. [2] WANG Y Y, LIAN H R, GE W G. Periodic solutions for a second order nonlinear functional differential equation[J]. Applied Mathematics Letters, 2007, 20:110-115. [3] WU J, WANG Z C. Two periodic solutions of second-order neutral functional differential equations[J]. Journal Mathematical Analysis and Applications, 2007, 329:677-689. [4] WU Y X. Existence nonexistence and multiplicity of periodic solutions for a kind of functional differential equation with parameter[J]. Nonlinear Analysis, 2009, 70:433-443. [5] GUO C J, GUO Z M. Existence of multiple periodic solutions for a class of second-order delay differential equations[J]. Nonlinear Analysis: Real World Applications, 2009, 10:3285-3297. [6] CHEUNG W S, REN J L, HAN W W. Positive periodic solution of second-order neutral functional differential equations[J]. Nonlinear Analysis, 2009, 71:3948-3955. [7] LI Y X. Positive periodic solutions of second-order differential equations with delay[J]. Abstract and Applied Analysis, 2012, 13:829783. [8] LI Q, LI Y X. On the existence of positive periodic solutions for second-order functional differential equations with multiple delays[J]. Abstract and Applied Analysis, 2012, 13:929870. [9] LI Q, LI Y X. Monotone iterative technique for second order delayed periodic problem in Banach spaces[J]. Applied Mathematics and Computation, 2015, 270:654-664. [10] GOU H D. Existence of ω-periodic solutions for second order delay differential equation in Banach spaces[J]. Filomat, 2022, 36(16):5347-5358. [11] LI Y X, GUO L J. Odd periodic solutions of fully second-order ordinary differential equations with superlinear nonlinearities[J]. Journal of Function Spaces, 2017, 5:4247365. [12] ZU J. Existence and uniqueness of periodic solution for nonlinear srcond-order ordinary differential equations[J]. Boundary Value Problems, 2011, 11:192156. [13] 李永祥,张丽娟. 完全二阶常微分方程的奇周期解[J]. 数学学报(中文版),2022,65(2):287-300. LI Yongxiang, ZHANG Lijuan. Singular periodic solution of fully second order ordinary differential equations[J]. Acta Mathematicae(Chinese Version), 2022, 65(2):287-300. [14] 刘晓明,李永祥. 具有非线性导数项的二阶常微分方程的正周期解[J]. 吉林大学学报(理学版),2023,61(6):1243-1250. LIU Xiaoming, LI Yongxiang. Positive periodic solutions of second-order ordinary differential equations with nonlinear derivative terms[J]. Journal of Jilin University(Natural Science), 2023, 61(6):1243-1250. [15] LI Y X. Positive periodic solutions of first and second-order ordinary differential equations[J]. Chinese Annals of Mathematics(Series B), 2004, 25(3):413-420. |
| [1] | 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21. |
| [2] | 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100. |
|