您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 110-120.doi: 10.6040/j.issn.1671-9352.0.2023.438

• • 上一篇    下一篇

一类含有p-Laplacian算子的带有参数及分数阶导数的分数阶微分方程边值问题唯一正解的存在性

郑艳萍,杨慧*,王文霞   

  1. 太原师范学院数学与统计学院, 山西 晋中 030619
  • 发布日期:2025-12-10
  • 通讯作者: 杨慧(1976— ),女,副教授,硕士,研究方向为泛函分析与微分方程. E-mail:yh3f@163.com
  • 作者简介:郑艳萍(1978— ),女,副教授,硕士,研究方向为算子理论与微分方程. E-mail:zhengyanping2006@126.com*通信作者:杨慧(1976— ),女,副教授,硕士,研究方向为泛函分析与微分方程. E-mail:yh3f@163.com
  • 基金资助:
    国家自然科学基金资助项目(11361047);山西省基础研究计划项目(20210302124529)

The existence of unique positive solution for boundary value problems of fractional differential equations with parameters and derivatives involving p-Laplacian operators

ZHENG Yanping, YANG Hui*, WANG Wenxia   

  1. School of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
  • Published:2025-12-10

摘要: 研究一类带有偏差量、分数阶导数及两个参数且边界条件中含有非线性积分项的分数阶p-Laplacian微分方程边值问题唯一正解的存在性。通过使用锥理论与和算子方法, 获得该边值问题存在唯一正解的最大参数存在区间, 并讨论正解对参数的连续依赖性。最后给出两个具体的例子作为所获结论的应用。

关键词: 分数阶微分方程, 边值问题, p-Laplacian算子, 唯一解

Abstract: This paper investigates the existence and uniqueness of positive solution for a class of boundary value problems of p-Laplacian fractional differential equations with a deviation and fractional derivatives involving nonlinear fractional integral terms in the boundary conditions and two parameters. Based on the cone theory and method operators, the maximum parameter interval for the existence of the unique positive solution is obtained and continuous dependence of the unique positive solution on parameters is discussed. Finally, two examples are given to illustrate the main results.

Key words: fractional differential equation, boundary value problem, p-Laplacian operator, unique solution

中图分类号: 

  • O175
[1] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of differential equations[M]. Amsterdam: Elsevier, 2006:69-70.
[2] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京:中国科学技术出版社,2013:3-4. BAI Zhanbing. Theory and applications of boundary value problems for fractional order differential equations[M]. Beijing: Science and Technology of China Press, 2013:3-4.
[3] LIANG S H, ZHANG J H. Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval[J]. Mathematical and Computer Modelling, 2011, 54(5/6):1334-1346.
[4] LU H L, HAN Z L, SUN S R, et al. Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian[J]. Advances in Difference Equations, 2013,(1):1-16.
[5] ZHAI C B, XU L. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(8):2820-2827.
[6] WANG G T. Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval[J]. Applied Mathematics Letters, 2015, 47:1-7.
[7] WANG W X, GUO X T. Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions[J]. Boundary Value Problems, 2016(1):42.
[8] ZHANG L L, TIAN H M. Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations[J]. Advances in Difference Equations, 2017(1):114.
[9] ZHANG X G, LIU L S, WIWATANAPATAPHEE B, et al. The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition[J]. Applied Mathematics and Computation, 2014, 235:412-422.
[10] LIU X P, JIA M. The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives[J]. Mediterranean Journal of Mathematics, 2017, 14(2):94.
[11] 田元生,李小平,葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报,2018,41(4):529-539. TIAN Yuansheng, LI Xiaoping, GE Weigao. Existence of positive solutions to boundary value problem of fractional differential equation with p-Laplacian[J]. Acta Mathematicae Applicatae Sinica, 2018, 41(4):529-539.
[12] JONG K, CHOI H, RI Y. Existence of positive solutions of a class of multi-point boundary value problems for p-Laplacian fractional differential equations with singular source terms[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 72:272-281.
[13] TIAN Y S, BAI Z B, SUN S J. Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator[J]. Advances in Difference Equations, 2019(1):349.
[14] DING Y Z, WEI Z L, XU J F, et al. Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian[J]. Journal of Computational and Applied Mathematics, 2015, 288:151-158.
[15] HE Y. Extremal solutions for p-Laplacian fractional differential systems involving the Riemann-Liouville integral boundary conditions[J]. Advances in Difference Equations, 2018, 2018(3):1-11.
[16] 王文霞,段佳艳,郭晓珍. 一类带有p-Laplacian算子的分数阶积分边值问题的正解与逐次迭代方法[J]. 应用数学,2022,35(1):147-155. WANG Wenxia, DUAN Jiayan, GUO Xiaozhen. Successive iteration and positive solutions for fractional integral boundary value problem with p-Laplacian operator[J]. Mathematica Applicata, 2022, 35(1):147-155.
[17] 郭大钧. 非线性泛函分析[M]. 3版. 北京:高等教育出版社,2015:181-182. GUO Dajun. Nonlinear Functional Analysis[M]. 3rd ed. Beijing: Higher Education Press, 2015:181-182.
[18] WANG W X, LIU X L, SHI P P. Nonlinear sum operator equations with a parameter and application to second-order three-point BVPs[J]. Abstract and Applied Analysis, 2014(1): 1085-3375.
[1] 陈潇,周文学,侯泽蓉. 一类隐式脉冲分数阶微分方程三点边值问题[J]. 《山东大学学报(理学版)》, 2025, 60(12): 121-129.
[2] 杨国萍,刘健. 非齐次Neumann边界条件下具有p-Laplacian算子的脉冲方程解的存在数量[J]. 《山东大学学报(理学版)》, 2024, 59(8): 42-47.
[3] 胡芳芳,胡卫敏,张永. 一类具有Hadamard导数的分数阶微分方程积分边值问题正解的存在唯一性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 53-61.
[4] 张伟,付欣雨,倪晋波. 分数阶耦合系统循环周期边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 45-52.
[5] 杜睿娟. 一类半直线上三阶多点边值问题在dim Ker L=3共振情形下解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 38-44.
[6] 刘慧娟Symbol`@@. 二阶微分方程三点边值问题定号解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(12): 79-86.
[7] 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91.
[8] 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76.
[9] 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88.
[10] 李宁,顾海波,马丽娜. 星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(7): 22-34.
[11] 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80.
[12] 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74.
[13] 罗李平,曾云辉,罗振国. 一类非线性阻尼分数阶微分方程的振动条件[J]. 《山东大学学报(理学版)》, 2021, 56(12): 40-44.
[14] 杜睿娟. 一类三阶m-点边值问题在dim Ker L=2共振情形下的可解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 33-39.
[15] 薛婷婷,徐燕,刘晓平. 分数阶变系数边值问题非平凡弱解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[2] 张亮,,王树梅,黄河燕,张孝飞 . 面向中文问答系统的问句句法分析[J]. J4, 2006, 41(3): 30 -33 .
[3] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61 -68 .
[4] 万海平,何华灿,周延泉 . 局部核方法及其应用[J]. J4, 2006, 41(3): 18 -20 .
[5] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[6] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[7] 冶成福,殷建 . Pl∪Cm∪Dn的补图的色等价刻画和色惟一的条件[J]. J4, 2006, 41(1): 24 -29 .
[8] 张方国. 椭圆曲线在密码中的应用:过去,现在,将来…[J]. J4, 2013, 48(05): 1 -13 .
[9] . 基于圆柱模型的三维电阻抗成像问题研究[J]. J4, 2009, 44(5): 45 -48 .
[10] 张升晓,岳钦艳,于慧,解建坤,王晓娜 . 高炉渣制备微晶玻璃的研究[J]. J4, 2006, 41(5): 129 -133 .