您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 40-44.doi: 10.6040/j.issn.1671-9352.0.2021.145

• • 上一篇    

一类非线性阻尼分数阶微分方程的振动条件

罗李平,曾云辉,罗振国   

  1. 衡阳师范学院数学与统计学院, 湖南 衡阳 421002
  • 发布日期:2021-11-25
  • 作者简介:罗李平(1964— ),男,教授,硕士生导师,研究方向为分数阶微分方程振动性理论. E-mail:stxyluolp@163.com
  • 基金资助:
    湖南省自然科学基金资助项目(2019JJ40004);湖南省教育厅重点资助项目(20A063);湖南省“双一流”应用特色学科(数学)资助项目(湘教通[2018]469号)

Oscillation conditions of certain nonlinear damped fractional differential equations

LUO Li-ping, ZENG Yun-hui, LUO Zhen-guo   

  1. College of Mathematics and Statistics, Hengyang Normal University, Hengyang 421002, Hunan, China
  • Published:2021-11-25

摘要: 利用积分平均技巧和Riccati变换,获得了一类带阻尼项的非线性分数阶微分方程所有解振动的若干新的充分判据,并通过例子阐述主要结果的有效性。

关键词: 振动性, 分数阶微分方程, 阻尼项, 积分平均技巧, Riccati变换

Abstract: By using integral averaging technique and Riccati transformations, some new sufficient criteria are obtained for oscillation of solutions of a class of nonlinear fractional differential equations with damping term. Some examples are provided to illustrate the relevance of the main results.

Key words: oscillation, fractional differential equation, damping term, integral averaging technique, Riccati transformation

中图分类号: 

  • O175.12
[1] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
[2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier B V, 2006.
[3] DAS S. Functional fractional calculus for system identification and controls[M]. New York: Springer, 2008.
[4] ABBAS S, BENCHOHRA M, NGUÉRÉKATA G M. Topics in fractional differential equations[M]. New York: Springer, 2012.
[5] ZHOU Yong, WANG Jinrong, ZHANG Lu. Basic theory of fractional differential equations[M]. 2nd ed. Singapore: World Scientific Publishing Co Pte Ltd, 2016.
[6] GRACE S R, AGARWAL R P, WONG P J Y, et al. On the oscillation of fractional differential equations[J]. Fractional Calculus and Applied Analysis, 2012,15(2):222-231.
[7] CHEN Daxue. Oscillatory behavior of a class of fractional differential equations with damping[J]. U P B Sci Bull, Series A, 2013, 75(1):107-118.
[8] FENG Qinghua, MENG Fanwei. Oscillation of solutions to nonlinear forced fractional differential equations[J]. Electronic Journal of Differential Equations, 2013(169):1-10.
[9] BOLAT Y. On the oscillation of fractional-order delay differential equations with constant coefficients[J]. Communications in Nonlinear Science & Numerical Simulations, 2014, 19(11):3988-3993.
[10] YANG Jichen, LIU Anping, LIU Ting. Forced oscillation of nonlinear fractional differential equations with damping term[J]. Advances in Difference Equations, 2015(1):1-7.
[11] TUNÇ E, TUNÇ O. On the oscillation of a class of damped fractional differential equations[J]. Miskolc Mathematical Notes, 2016, 17(1):647-656.
[12] APHITHANA A, NTOUYAS S K, TARIBOON J. Forced oscillation of fractional differential equations via conformable derivatives with damping term[J]. Boundary Value Problems, 2019(1):1-16.
[13] FENG Limei, SUN Shurong. Oscillation theorems for three classes of conformable fractional differential equations[J]. Advances in Difference Equations, 2019(1):1-30.
[14] SUN Yufeng, ZENG Zheng, SONG Jie. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation[J]. Numerical Algebra, 2019, 10(2):157-164.
[15] PRAKASH P, HARIKRISHNAN S, NIETO J J, et al. Oscillation of a time fractional partial differential equation[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2014(15):1-10.
[1] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[2] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
[3] 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60.
[4] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[5] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[6] 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73.
[7] 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77.
[8] 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84.
[9] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62.
[10] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[11] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[12] 罗李平, 罗振国, 曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J]. 山东大学学报(理学版), 2015, 50(03): 57-61.
[13] 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74.
[14] 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49.
[15] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!