《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 110-120.doi: 10.6040/j.issn.1671-9352.0.2023.438
郑艳萍,杨慧*,王文霞
ZHENG Yanping, YANG Hui*, WANG Wenxia
摘要: 研究一类带有偏差量、分数阶导数及两个参数且边界条件中含有非线性积分项的分数阶p-Laplacian微分方程边值问题唯一正解的存在性。通过使用锥理论与和算子方法, 获得该边值问题存在唯一正解的最大参数存在区间, 并讨论正解对参数的连续依赖性。最后给出两个具体的例子作为所获结论的应用。
中图分类号:
| [1] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of differential equations[M]. Amsterdam: Elsevier, 2006:69-70. [2] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京:中国科学技术出版社,2013:3-4. BAI Zhanbing. Theory and applications of boundary value problems for fractional order differential equations[M]. Beijing: Science and Technology of China Press, 2013:3-4. [3] LIANG S H, ZHANG J H. Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval[J]. Mathematical and Computer Modelling, 2011, 54(5/6):1334-1346. [4] LU H L, HAN Z L, SUN S R, et al. Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian[J]. Advances in Difference Equations, 2013,(1):1-16. [5] ZHAI C B, XU L. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(8):2820-2827. [6] WANG G T. Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval[J]. Applied Mathematics Letters, 2015, 47:1-7. [7] WANG W X, GUO X T. Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions[J]. Boundary Value Problems, 2016(1):42. [8] ZHANG L L, TIAN H M. Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations[J]. Advances in Difference Equations, 2017(1):114. [9] ZHANG X G, LIU L S, WIWATANAPATAPHEE B, et al. The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition[J]. Applied Mathematics and Computation, 2014, 235:412-422. [10] LIU X P, JIA M. The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives[J]. Mediterranean Journal of Mathematics, 2017, 14(2):94. [11] 田元生,李小平,葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报,2018,41(4):529-539. TIAN Yuansheng, LI Xiaoping, GE Weigao. Existence of positive solutions to boundary value problem of fractional differential equation with p-Laplacian[J]. Acta Mathematicae Applicatae Sinica, 2018, 41(4):529-539. [12] JONG K, CHOI H, RI Y. Existence of positive solutions of a class of multi-point boundary value problems for p-Laplacian fractional differential equations with singular source terms[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 72:272-281. [13] TIAN Y S, BAI Z B, SUN S J. Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator[J]. Advances in Difference Equations, 2019(1):349. [14] DING Y Z, WEI Z L, XU J F, et al. Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian[J]. Journal of Computational and Applied Mathematics, 2015, 288:151-158. [15] HE Y. Extremal solutions for p-Laplacian fractional differential systems involving the Riemann-Liouville integral boundary conditions[J]. Advances in Difference Equations, 2018, 2018(3):1-11. [16] 王文霞,段佳艳,郭晓珍. 一类带有p-Laplacian算子的分数阶积分边值问题的正解与逐次迭代方法[J]. 应用数学,2022,35(1):147-155. WANG Wenxia, DUAN Jiayan, GUO Xiaozhen. Successive iteration and positive solutions for fractional integral boundary value problem with p-Laplacian operator[J]. Mathematica Applicata, 2022, 35(1):147-155. [17] 郭大钧. 非线性泛函分析[M]. 3版. 北京:高等教育出版社,2015:181-182. GUO Dajun. Nonlinear Functional Analysis[M]. 3rd ed. Beijing: Higher Education Press, 2015:181-182. [18] WANG W X, LIU X L, SHI P P. Nonlinear sum operator equations with a parameter and application to second-order three-point BVPs[J]. Abstract and Applied Analysis, 2014(1): 1085-3375. |
| [1] | 陈潇,周文学,侯泽蓉. 一类隐式脉冲分数阶微分方程三点边值问题[J]. 《山东大学学报(理学版)》, 2025, 60(12): 121-129. |
| [2] | 杨国萍,刘健. 非齐次Neumann边界条件下具有p-Laplacian算子的脉冲方程解的存在数量[J]. 《山东大学学报(理学版)》, 2024, 59(8): 42-47. |
| [3] | 胡芳芳,胡卫敏,张永. 一类具有Hadamard导数的分数阶微分方程积分边值问题正解的存在唯一性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 53-61. |
| [4] | 张伟,付欣雨,倪晋波. 分数阶耦合系统循环周期边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 45-52. |
| [5] | 杜睿娟. 一类半直线上三阶多点边值问题在dim Ker L=3共振情形下解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 38-44. |
| [6] | 刘慧娟Symbol`@@. 二阶微分方程三点边值问题定号解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(12): 79-86. |
| [7] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
| [8] | 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76. |
| [9] | 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88. |
| [10] | 李宁,顾海波,马丽娜. 星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(7): 22-34. |
| [11] | 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80. |
| [12] | 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74. |
| [13] | 罗李平,曾云辉,罗振国. 一类非线性阻尼分数阶微分方程的振动条件[J]. 《山东大学学报(理学版)》, 2021, 56(12): 40-44. |
| [14] | 杜睿娟. 一类三阶m-点边值问题在dim Ker L=2共振情形下的可解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 33-39. |
| [15] | 薛婷婷,徐燕,刘晓平. 分数阶变系数边值问题非平凡弱解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 45-51. |
|