您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 82-88.doi: 10.6040/j.issn.1671-9352.0.2022.222

• • 上一篇    

一类半正二阶Neumann边值问题正解的存在性

雷想兵   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2023-03-27
  • 作者简介:雷想兵(1997— ),男,硕士研究生,研究方向为常微分方程与动力系统. E-mail:xlei_nwnu@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061064)

Existence of positive solutions for a class of semipositone second order Neumann boundary value problems

LEI Xiang-bing   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-03-27

摘要: 考察一类半正二阶Neumann边值问题{u″(t)+a(t)u(t)=λf(t,u(t)), 0π2)/4, f∈C([0,1]×R+,R)且f(t,0)<0。证得存在一个正数λ0,使得当0<λ<λ0时,该问题存在一个正解。主要结果的证明基于拓扑度理论。

关键词: Neumann边值问题, 正解, 半正, 拓扑度

Abstract: This paper considers the existence of positive solutions of second order Neumann boundary value problems{u″(t)+a(t)u(t)=λf(t,u(t)), 0where λ is a positive parameter, a∈C[0,1] and 0π2)/4, f∈C([0,1]×R+,R)and f(t,0)<0. The proof of that there exists a positive constant λ0 such that the problem has one positive solution for 0<λ<λ0. The proof of the main results is based on topological degree theory.

Key words: Neumann boundary value problem, positive solution, semipositone, topological degree

中图分类号: 

  • O175.8
[1] JIANG Daqing, LIU Huizhao. Existence of positive solution to second order Neumann boundary vaule problems[J]. Journal of Mathematical Research and Exposition, 2000, 20(3):360-364.
[2] SUN Jianping, LI Wantong. Multiple positive solution to second order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2003, 146(1):187-194.
[3] SUN Jianping, LI Wantong, CHENG Suisun. Three positive solution to second-order Neumann boundary value problems[J]. Applied Mathematics Letters, 2004, 17(9):1079-1084.
[4] 姚庆六. 非线性变系数Neumann边值问题的正解[J]. 山东大学学报(理学版), 2007, 42(12):10-14. YAO Qingliu. Positive solutions of nonlinear second-order Neumann boundary value problems with a variable coefficient[J]. Journal of Shangdong University(Natural Science), 2007, 42(12):10-14.
[5] CHU Jifeng, SUN Yigang, CHEN Hao. Positive solution of Neumann problens with singularities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(2):1267-1272.
[6] SUN Yan, CHO Yeolje, O'REGAN D. Positive solution for singular second order Neumann boundary value problems via a cone fixed point theorem[J]. Applied Mathematics and Computation, 2009, 210(1):80-86.
[7] LI Xiaoyue, JIANG Daqing. Optimal existence theory for single and multiple positive solutions to second order Neumann boundary vaule problems[J]. Indian Journal of Pure and Applied Mathematics, 2004, 35(5):573-586.
[8] 闫东明. 变系数二阶Neumann边值问题正解的存在性[J]. 高校应用数学学报(A辑), 2013, 28(4):477-487. YAN Dongming. Existence of positive solutions to second order Neumann boundary value problems[J]. Journal of Applied Mathematics in Universities(Series A), 2013, 28(4):477-487.
[9] BENSEDIK A, BOUCHEKIF M. Symmetry and uniqueness of positive solutions for Neumann boundary value problem[J]. Applied Mathematics Letters, 2007, 20(4):419-426.
[10] LI Zhilong. Existence of positive solution of superlinear second-order Neumann boundary value problems[J]. Nonlinear Analysis, 2010, 72(6):3216-3221.
[11] ZEIDLER E. Nonlinear functional analysis and its applications[M]. New York: Springer-Verlag, 1985.
[12] 郭大均,孙经先. 非线性积分方程[M]. 济南:山东科学技术出版社, 1987. GUO Dajun, SUN Jingxian. Nonlinear integral equation[M]. Jinan: Shandong Science and Technology Press, 1987.
[1] 孙晓玥. 非齐次边界条件下弹性梁方程正解的多解性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 65-73.
[2] 徐晶,高红亮. 带有凸-凹非线性项的平均曲率问题正解的个数[J]. 《山东大学学报(理学版)》, 2023, 58(4): 74-81.
[3] 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42.
[4] 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41.
[5] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[6] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[7] 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74.
[8] 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110.
[9] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[10] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[11] 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110.
[12] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[13] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[14] 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37.
[15] 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!