《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 74-81.doi: 10.6040/j.issn.1671-9352.0.2022.157
• • 上一篇
徐晶,高红亮*
XU Jing, GAO Hong-liang*
摘要: 考虑一维Minkowski空间中给定平均曲率问题{-((u')/((1-u'2)1/2))'=λf(u), x∈(-L,L),u(-L)=0=u(L)正解的确切个数及其分歧曲线,其中参数λ>0,L>0, f∈C1[0,∞)∩C2(0,∞), f(0)=0, f(u)>0,u∈(0,L)且f在(0,L)上为凸-凹函数。通过详细的时间映像分析,在两种不同的情况下,根据λ的不同范围,获得了该问题没有正解,恰有一个或两个正解的结果。
中图分类号:
[1] COELHO I, CORSATO C, OBERSNEL F, et al. Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation[J]. Advanced Nonlinear Studies, 2012, 12(3):621-638. [2] BEREANU C, JEBELEAN P, TORRES P J. Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space[J]. Journal of Functional Analysis, 2013, 264(1):270-287. [3] BEREANU C, JEBELEAN P, TORRES P J. Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space[J]. Journal of Functional Analysis, 2013, 265(4):644-659. [4] MA Ruyun, GAO Hongliang, LU Yanqiong. Global structure of radial positive solutions for a prescribed mean curvature problem in a ball[J]. Journal of Functional Analysis, 2016, 270(7):2430-2455. [5] DAI Guowei. Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space[J]. Calculus of Variations and Partial Differential Equations, 2016, 55(5):1-17. [6] DAI Guowei. Global bifurcation for problem with mean curvature operator on general domain[J]. Nonlinear Differential Equations and Applications, 2017, 3(24):1-10. [7] COELHO I, CORSATO C, RIVETTI S. Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball[J]. Topological Methods in Nonlinear Analysis, 2014, 44(1):23-39. [8] MA Ruyun, CHEN Tinlan, GAO Hongliang. On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2016, 2016(98):1-10. [9] ZHANG Xuemei, FENG Meiqiang. Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space[J]. Communications in Contemporary Mathematics, 2019, 21(3):1-15. [10] HUANG Shaoyuan. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application[J]. Communications on Pure and Applied Analysis, 2018, 17(3):1271-1294. [11] HUANG Shaoyuan. Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications[J]. Journal of Differential Equations, 2018, 264(9):5977- 6011. [12] GAO Hongliang, XU Jing. Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation[J]. Boundary Value Problems, 2021, 2021(1):1-10. [13] KORMAN P, LI Y. On the exactness of an S-shaped bifurcation curve[J]. Proceedings of the American Mathematical Society, 1999, 127(4):1011-1020. [14] HUNG K C, WANG S H. A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem[J]. Journal of Differential Equations, 2011, 251(2):223-237. [15] KORMAN P, LI Y. Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities[J]. Journal of Differential Equations, 2014, 257(10):3730-3737. |
[1] | 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102. |
[2] | 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63. |
[3] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
[4] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[5] | 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110. |
[6] | 孙妍妍,刘衍胜. 抽象空间中Hadamard分数阶微分方程奇异边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 95-103. |
[7] | 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41. |
[8] | 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72-81. |
[9] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[10] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[11] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[12] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[13] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[14] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[15] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
|