您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 74-81.doi: 10.6040/j.issn.1671-9352.0.2022.157

• • 上一篇    

带有凸-凹非线性项的平均曲率问题正解的个数

徐晶,高红亮*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2023-03-27
  • 作者简介:徐晶(1997— ),女,硕士研究生,研究方向为微分方程边值问题. E-mail:XJ18734569807@163.com*通信作者简介:高红亮(1985— ),男,副教授,研究方向为分歧理论及常微分方程边值问题. E-mail:gaohongliang101@163.com
  • 基金资助:
    国家自然科学基金资助项目(11801243);甘肃省高等学校青年博士基金项目(2022QB-056);兰州交通大学青年基金资助项目(2017012)

Number of positive solutions for mean curvature problem with convex-concave nonlinearity

XU Jing, GAO Hong-liang*   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2023-03-27

摘要: 考虑一维Minkowski空间中给定平均曲率问题{-((u')/((1-u'2)1/2))'=λf(u), x∈(-L,L),u(-L)=0=u(L)正解的确切个数及其分歧曲线,其中参数λ>0,L>0, f∈C1[0,∞)∩C2(0,∞), f(0)=0, f(u)>0,u∈(0,L)且f在(0,L)上为凸-凹函数。通过详细的时间映像分析,在两种不同的情况下,根据λ的不同范围,获得了该问题没有正解,恰有一个或两个正解的结果。

关键词: Minkowski-曲率方程, 正解的确切个数, 分歧曲线, 时间映像

Abstract: This paper considers the exact multiplicity and bifurcation curves of positive solutions for the prescribed mean curvature problem in one-dimensional Minkowski space in the form of{-((u')/((1-u'2)1/2))'=λf(u), x∈(-L,L),u(-L)=0=u(L)where λ,L are positive parameters, f∈C10,∞)∩C2(0,∞)satisfies f(0)=0, and f(u)>0,u∈(0,L)and f is convex-concave on (0,L). By using a detailed analysis of the time map, it is obtained that the above problem has zero, exactly one or exactly two positive solutions according to different ranges of λ in two different cases.

Key words: Minkowski-curvature equation, exact multiplicity of positive solution, bifurcation curve, time map

中图分类号: 

  • O175.8
[1] COELHO I, CORSATO C, OBERSNEL F, et al. Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation[J]. Advanced Nonlinear Studies, 2012, 12(3):621-638.
[2] BEREANU C, JEBELEAN P, TORRES P J. Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space[J]. Journal of Functional Analysis, 2013, 264(1):270-287.
[3] BEREANU C, JEBELEAN P, TORRES P J. Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space[J]. Journal of Functional Analysis, 2013, 265(4):644-659.
[4] MA Ruyun, GAO Hongliang, LU Yanqiong. Global structure of radial positive solutions for a prescribed mean curvature problem in a ball[J]. Journal of Functional Analysis, 2016, 270(7):2430-2455.
[5] DAI Guowei. Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space[J]. Calculus of Variations and Partial Differential Equations, 2016, 55(5):1-17.
[6] DAI Guowei. Global bifurcation for problem with mean curvature operator on general domain[J]. Nonlinear Differential Equations and Applications, 2017, 3(24):1-10.
[7] COELHO I, CORSATO C, RIVETTI S. Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball[J]. Topological Methods in Nonlinear Analysis, 2014, 44(1):23-39.
[8] MA Ruyun, CHEN Tinlan, GAO Hongliang. On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2016, 2016(98):1-10.
[9] ZHANG Xuemei, FENG Meiqiang. Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space[J]. Communications in Contemporary Mathematics, 2019, 21(3):1-15.
[10] HUANG Shaoyuan. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application[J]. Communications on Pure and Applied Analysis, 2018, 17(3):1271-1294.
[11] HUANG Shaoyuan. Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications[J]. Journal of Differential Equations, 2018, 264(9):5977- 6011.
[12] GAO Hongliang, XU Jing. Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation[J]. Boundary Value Problems, 2021, 2021(1):1-10.
[13] KORMAN P, LI Y. On the exactness of an S-shaped bifurcation curve[J]. Proceedings of the American Mathematical Society, 1999, 127(4):1011-1020.
[14] HUNG K C, WANG S H. A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem[J]. Journal of Differential Equations, 2011, 251(2):223-237.
[15] KORMAN P, LI Y. Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities[J]. Journal of Differential Equations, 2014, 257(10):3730-3737.
[1] 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102.
[2] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[3] 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83.
[4] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[5] 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110.
[6] 孙妍妍,刘衍胜. 抽象空间中Hadamard分数阶微分方程奇异边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 95-103.
[7] 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41.
[8] 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72-81.
[9] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[10] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[11] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[12] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[13] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[14] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[15] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!