您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 103-109.doi: 10.6040/j.issn.1671-9352.0.2023.463

• • 上一篇    下一篇

一类含导数项的二阶时滞微分方程的周期解

喜霞,李永祥*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-12-10
  • 通讯作者: 李永祥(1963— ),男,教授,博士,研究方向为非线性泛函分析. E-mail:liyx@nwnu.edu.cn
  • 作者简介:喜霞(1997— ),女,硕士研究生,研究方向为非线性泛函分析. E-mail:2711769909@qq.com*通信作者:李永祥(1963— ),男,教授,博士,研究方向为非线性泛函分析. E-mail:liyx@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12061062)

Periodic solutions of a second-order delay ordinary differential equation with derivative term

XI Xia, LI Yongxiang*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-12-10

摘要: 讨论非线性项中含导数项的二阶时滞常微分方程-u″(t)+a(t)u(t)=f(t,u(t),u(t-τ),u'(t)), t∈R的2π-周期解的存在性与唯一性,其中a:R→(0,+∞)为以2π为周期的连续函数, f:R4→R连续, f(t,x,y,z)关于t以2π为周期,τ>0为常数。在非线性项f满足适当的不等式条件下,应用Leray-Schauder不动点定理与先验估计技巧,获得该方程2π-周期解的存在性与唯一性结果。

关键词: 二阶时滞常微分方程, 2π-周期解, 存在性和唯一性, Leray-Schauder不动点定理

Abstract: In this paper, the existence and uniqueness of 2π-periodic solutions are discussed for the second-order delay ordinary differential equations with derivative term in the nonlinearity-u″(t)+a(t)u(t)=f(t,u(t),u(t-τ),u'(t)), t∈Rwhere a:R→(0,+∞)is a 2π periodic continuous function, f:R4→R is a continuous function and f(t,x,y,z) is 2π-periodic on t,τ>0 is a constant. The nonlinearity f satisfies some appropriate inequality conditions, the existence and uniqueness results of 2π-periodic solutions are obtained by using the Leray-Schauder fixed point theorem and the technique of prior estimates.

Key words: second order delay differential equations, 2π-periodic solution, existence and uniqueness, Leray-Schauder fixed point theorem

中图分类号: 

  • O175.8
[1] LI J W, CHENG S S. Periodic solutions of a second order forced sublinear differential equation with delay[J]. Applied Mathematics Letters, 2005, 18:1373-1380.
[2] WANG Y Y, LIAN H R, GE W G. Periodic solutions for a second order nonlinear functional differential equation[J]. Applied Mathematics Letters, 2007, 20:110-115.
[3] WU J, WANG Z C. Two periodic solutions of second-order neutral functional differential equations[J]. Journal Mathematical Analysis and Applications, 2007, 329:677-689.
[4] WU Y X. Existence nonexistence and multiplicity of periodic solutions for a kind of functional differential equation with parameter[J]. Nonlinear Analysis, 2009, 70:433-443.
[5] GUO C J, GUO Z M. Existence of multiple periodic solutions for a class of second-order delay differential equations[J]. Nonlinear Analysis: Real World Applications, 2009, 10:3285-3297.
[6] CHEUNG W S, REN J L, HAN W W. Positive periodic solution of second-order neutral functional differential equations[J]. Nonlinear Analysis, 2009, 71:3948-3955.
[7] LI Y X. Positive periodic solutions of second-order differential equations with delay[J]. Abstract and Applied Analysis, 2012, 13:829783.
[8] LI Q, LI Y X. On the existence of positive periodic solutions for second-order functional differential equations with multiple delays[J]. Abstract and Applied Analysis, 2012, 13:929870.
[9] LI Q, LI Y X. Monotone iterative technique for second order delayed periodic problem in Banach spaces[J]. Applied Mathematics and Computation, 2015, 270:654-664.
[10] GOU H D. Existence of ω-periodic solutions for second order delay differential equation in Banach spaces[J]. Filomat, 2022, 36(16):5347-5358.
[11] LI Y X, GUO L J. Odd periodic solutions of fully second-order ordinary differential equations with superlinear nonlinearities[J]. Journal of Function Spaces, 2017, 5:4247365.
[12] ZU J. Existence and uniqueness of periodic solution for nonlinear srcond-order ordinary differential equations[J]. Boundary Value Problems, 2011, 11:192156.
[13] 李永祥,张丽娟. 完全二阶常微分方程的奇周期解[J]. 数学学报(中文版),2022,65(2):287-300. LI Yongxiang, ZHANG Lijuan. Singular periodic solution of fully second order ordinary differential equations[J]. Acta Mathematicae(Chinese Version), 2022, 65(2):287-300.
[14] 刘晓明,李永祥. 具有非线性导数项的二阶常微分方程的正周期解[J]. 吉林大学学报(理学版),2023,61(6):1243-1250. LIU Xiaoming, LI Yongxiang. Positive periodic solutions of second-order ordinary differential equations with nonlinear derivative terms[J]. Journal of Jilin University(Natural Science), 2023, 61(6):1243-1250.
[15] LI Y X. Positive periodic solutions of first and second-order ordinary differential equations[J]. Chinese Annals of Mathematics(Series B), 2004, 25(3):413-420.
[1] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
[2] 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张雪凤1,刘鹏1,2. 基于类间差异最大化的加权距离改进K-means算法[J]. J4, 2010, 45(7): 28 -33 .
[2] 王贵杰 王文德 姚德利. CAD技术在道路平面交叉口竖向设计中的应用[J]. J4, 2009, 44(11): 79 -82 .
[3] 倪桂萍,王延平,王华田*,韩亚飞,桑亚林. 杨树人工林土壤细菌DNA的提取与扩增[J]. J4, 2013, 48(05): 23 -28 .
[4] 王 怡,刘爱莲 . 时标下的蛛网模型[J]. J4, 2007, 42(7): 41 -44 .
[5] 刘冰 陆玮洁 杨国生. 遗传算法在烷基硝基苯酚类化合物的QSRR中的应用[J]. J4, 2009, 44(9): 8 -11 .
[6] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85 -90 .
[7] 王继强, . 一类median问题的近似算法研究[J]. J4, 2006, 41(4): 1 -03 .
[8] 王凤雨. 随机一般多孔介质与快速扩散方程[J]. J4, 2009, 44(10): 1 -3 .
[9] 焦玉娟 张申贵. A+xB[[x]]的S-Noether性质[J]. J4, 2009, 44(8): 58 -61 .
[10] 赵 蕊,霍贵成* . 新疆酸奶子中乳酸菌多样性分析[J]. J4, 2008, 43(7): 18 -22 .